9/24/2021 News Simple exploration of 4774-14-5

The chemical industry reduces the impact on the environment during synthesis 2,6-Dichloropyrazine. I believe this compound will play a more active role in future production and life.

Related Products of 4774-14-5, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 4774-14-5, name is 2,6-Dichloropyrazine, This compound has unique chemical properties. The synthetic route is as follows.

In the hydrothermal reaction kettle are respectively added with 2, 6 – two chlorine pyrrole qin (10.0 g, 67.1 mmol) and ammonia (100 ml), 100 C lower reaction 5 h. The completion of the reaction, cooling to room temperature, filtered, the filter cake is hexane (16 ml) beating shall 2 – amino -6 – chloropyrazine white solid 8.2 g, yield is 95.0%.

The chemical industry reduces the impact on the environment during synthesis 2,6-Dichloropyrazine. I believe this compound will play a more active role in future production and life.

Reference:
Patent; Guizhou University; Zhou Zhixu; Li Fei; Yue Yi; (7 pag.)CN107857737; (2018); A;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Sep-21 News Some scientific research about 22047-25-2

The synthetic route of 22047-25-2 has been constantly updated, and we look forward to future research findings.

22047-25-2, name is Acetylpyrazine, belongs to pyrazines compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. Formula: C6H6N2O

General procedure: Ketone (20 mmol) (2-acetylpyridine, 2-acetylthiazole or 2-acetylpyrazine)was added to a solution of aldehyde (10 mmol) (4-methoxybenzaldehyde,4-methoxy-1-naphthaldehyde or 6-methoxy-2-naphthaldehyde) in EtOH (75 mL). KOH (1.54 g, 27.5 mmol) and NH3(aq)(35 mL) were then added. The solution was stirred at room temp. for 24 h. The solid was collected by filtration and washed with H2O. Recrystallization from ethanol (L1,L4, L7) or toluene (L2, L3, L5, L6, L8,L9) afforded a crystalline solid.

The synthetic route of 22047-25-2 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Klemens, Tomasz; ?witlicka, Anna; Machura, Barbara; Kula, S?awomir; Krompiec, Stanis?aw; ?aba, Katarzyna; Korzec, Mateusz; Siwy, Mariola; Janeczek, Henryk; Schab-Balcerzak, Ewa; Szalkowski, Marcin; Grzelak, Justyna; Ma?kowski, Sebastian; Dyes and Pigments; vol. 163; (2019); p. 86 – 101;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

September 24, 2021 News Simple exploration of 875781-43-4

The synthetic route of 2-Bromo-5H-pyrrolo[2,3-b]pyrazine has been constantly updated, and we look forward to future research findings.

These common heterocyclic compound, 875781-43-4, name is 2-Bromo-5H-pyrrolo[2,3-b]pyrazine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. SDS of cas: 875781-43-4

To a solution of 2-bromo-5H-pyrrolo[3,2-Z?]pyrazine (0.68 g, 3.4 mmol) in acetone (17 mL) was added N-iodosuccinimide (0.82 g, 3.6 mmol) and the resulting mixture was stirred for 4 h at rt. The mixture was evaporated in vacuo to yield a residue that was purified via silica gel chromatography eluting with 40% THF in hexanes to give the title compound as a yellow solid (0.99 g, 89%). NMR (DMSO-i , 300 MHz): delta 12.82 (s, 1H), 8.42 (s, 1 H), 8.20 (s, 1 H). HPLC retention time: 2.23 minutes. MS ESI (m/z): 324.0, 326.0 (M+H)+, calc. 323.

The synthetic route of 2-Bromo-5H-pyrrolo[2,3-b]pyrazine has been constantly updated, and we look forward to future research findings.

Reference:
Patent; UNIVERSITY OF ROCHESTER; BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA; GELBARD, Harris A.; DEWHURST, Stephen; GENDELMAN, Howard E.; WO2014/85795; (2014); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

S-21 News Application of 17231-51-5

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 17231-51-5, its application will become more common.

Some common heterocyclic compound, 17231-51-5, name is 3-Amino-6-bromopyrazine-2-carbonitrile, molecular formula is C5H3BrN4, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. Recommanded Product: 3-Amino-6-bromopyrazine-2-carbonitrile

Step 2. 6-bromo-3-chloropyrazine-2-carbonitrileTo a solution of 3-amino-6-bromopyrazine-2-carbonitrile (587 mg, 2.95 mmol) in acetonitrile (29.4 mL) was added copper(II) chloride (470 mg, 3.5 mmol). The reaction was heated to 60 C. for 10 min, then t-butyl nitrite (510 muL, 4.3 mmol) was added drop-wise. The reaction was held at 60 C. for 16 h at which point LCMS indicated complete reaction. The reaction was cooled to ambient temperature and partitioned between 1N HCl and EtOAc and the phases were separated. The organic phase was washed 2× with water followed by brine, then dried over MgSO4 and concentrated in vacuo to provide the crude product which crystallized upon standing The product was purified (120 g prepacked SiO2 cartridge, 85 mL/min, gradient from 0-20% EtOAc/hexanes over 12 min) to recover the desired product, 442 mg. 1H NMR (300 MHz, CDCl3): delta 8.68 (s, 1H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 17231-51-5, its application will become more common.

Reference:
Patent; Rodgers, James D.; Shepard, Stacey; Arvanitis, Argyrios G.; Wang, Haisheng; Storace, Louis; Folmer, Beverly; Shao, Lixin; Zhu, Wenyu; Glenn, Joseph; US2010/298334; (2010); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

September 24, 2021 News Some tips on 88625-24-5

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 5-Chloropyrazine-2-carbaldehyde, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 88625-24-5, name is 5-Chloropyrazine-2-carbaldehyde, belongs to pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 88625-24-5, Safety of 5-Chloropyrazine-2-carbaldehyde

A solution of 5-chloropyrazine-2-carbaldehyde (5.20 g, 36.5 mmol) in 50 mL of methanol was cooled to O0C. Sodium borohydride (1.45 g, 38.3 mmol) was added and the reaction mixture was allowed to stir at ambient temperature for 3 hour. Saturated aqueous ammonium chloride (5 mL) was added, and the methanol was removed in vacuo. The resulting residue was dissolved in ethyl acetate (50 mL) and washed with aqueous sodium bicarbonate (2 x 50 mL) and brine (50 mL). The combined organic extracts were dried, filtered and concentrated in vacuo to provide the title compound that gave a proton NMR spectra consistent with theory.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 5-Chloropyrazine-2-carbaldehyde, and friends who are interested can also refer to it.

Reference:
Patent; MERCK & CO., INC.; WO2009/134668; (2009); A2;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

9/24/2021 News Extracurricular laboratory: Synthetic route of 4774-14-5

The chemical industry reduces the impact on the environment during synthesis 2,6-Dichloropyrazine. I believe this compound will play a more active role in future production and life.

Synthetic Route of 4774-14-5, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 4774-14-5, name is 2,6-Dichloropyrazine, This compound has unique chemical properties. The synthetic route is as follows.

A solution of 2,6-dichloropyrazine (15kg, 1O1.4mol, 1.00 equiv) in water(20 L), ammonia water (25 L, 25 %) was placed in a 100 L pressure tank reactor. The resulting solution was stirred for 6 h at 120C. The reaction progress was monitored by TLC (EA:PE = 1 : 1) until the starting material was consumed, and cooled to room temperature. Thesolids were collected by filtration. The solid was washed with water and dried. The solidwas washed with petroleum ether to remove the unreacted starting materials. The product (7.8kg, purity = 95 %, 60% yield) was obtained as a white solid.

The chemical industry reduces the impact on the environment during synthesis 2,6-Dichloropyrazine. I believe this compound will play a more active role in future production and life.

Reference:
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY DEVELOPMENT LIMITED; CUI, Haifeng; HENNESSY, Alan; JIN, Qi; MILES, Timothy James; MOSS, Stephen Frederick; PEARSON, Neil David; (173 pag.)WO2017/29602; (2017); A2;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

S-21 News Introduction of a new synthetic route about 38557-72-1

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 2-Chloro-3,5-dimethylpyrazine, and friends who are interested can also refer to it.

38557-72-1, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 38557-72-1 name is 2-Chloro-3,5-dimethylpyrazine, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a mixture of 2-chloro-3 , 5-dimethylpyrazine (2 g) and EtOH (20 mL) were added potassium vinyltrifluoroborate (2.067 g) and TEA (2.93 mL) at room temperature, and the mixture was stirred under nitrogen atmosphere. To the mixture was added PdCl2(dppf) (1.026 g) , and the mixture was refluxed for 2 h. The mixture was concentrated, and the residue was poured into water at room temperature, and the mixture was extracted with EtOAc. The organic layer was separated, washed successively with water and brine, dried over MgS04 and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/hexane) to give the title compound (1.650 g) · XH NMR (300 MHz, CDC13) delta 2.51 (3H, s), 2.54-2.62 (3H, m) , 5.47-5.62 (1H, m) , 6.22-6.47 (1H, m) , 6.86-7.03 (1H, m) , 8.25 (1H, s) .

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 2-Chloro-3,5-dimethylpyrazine, and friends who are interested can also refer to it.

Reference:
Patent; TAKEDA PHARMACEUTICAL COMPANY LIMITED; TAKAKURA, Nobuyuki; BANNO, Yoshihiro; TERAO, Yoshito; OCHIDA, Atsuko; MORIMOTO, Sachie; KITAMURA, Shuji; TOMATA, Yoshihide; YASUMA, Tsuneo; IKOMA, Minoru; MASUDA, Kei; WO2013/125732; (2013); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

September 24, 2021 News Introduction of a new synthetic route about 6863-73-6

The synthetic route of 3-Chloropyrazin-2-amine has been constantly updated, and we look forward to future research findings.

These common heterocyclic compound, 6863-73-6, name is 3-Chloropyrazin-2-amine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. category: Pyrazines

8-Chloroimidazor 1 ,2-alpyrazine[00237] 2-Bromo-l,l-diethoxyethane (6.21 mL, 0.041 mmol) was added to a mixture of 48% HBr (aq.) solution (1.64 mL) and water (20 mL) and the resulting mixture was stirred under reflux for 1 hour. The reaction mixture was then allowed to cool and washed with brine (2 x 30 mL), dried (MgSO4) and carefully concentrated in vacuo. The resulting oil was dissolved in 1 ,2-dimethoxoethane (20 mL) and added to a suspension of 2-amino-3 -chloro- pyrazine (2.142 g, 0.016 mmol) in 1 ,2-dimethoxoethane (30 mL). 48 % HBr (aq.) solution (0.313 mL) was then added and the resulting mixture was stirred under reflux for 1 hour. Upon cooling a precipitate formed which was collected by filtration and washed with diethyl ether to give the crude HBr salt. This was dissolved in NaHCO3 (aq.) and extracted into DCM. Drying of the organic layer (MgSO4) followed by concentration in vacuo provided the title compound (1.9 g, 75%) as a yellow/pale brown solid. 1H NMR (d6-DMSO): 8.68-8.64 (IH, br m), 8.30-8.26 (IH, br m), 7.88-7.85 (IH, br m), 7.75-7.70 (IH, br m).

The synthetic route of 3-Chloropyrazin-2-amine has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BioMarin IGA, Ltd.; WREN, Stephen Paul; WYNNE, Graham Michael; LECCI, Cristina; WILSON, Francis Xavier; PRICE, Paul Damien; MIDDLETON, Penny; WO2010/69684; (2010); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

24-Sep-2021 News The important role of 4774-14-5

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 4774-14-5, name is 2,6-Dichloropyrazine, A new synthetic method of this compound is introduced below., Recommanded Product: 2,6-Dichloropyrazine

A mixture of 2,6-dichloropyrazine (2.5 g, 16.8 mmol, 1.0 equiv),/?- ? toluenesulfonic acid (6.4 g, 33.6 mmol, 2.0 equiv), sodium iodide (20.0 g, 133.3 mmol, 8.0 equiv), 15-crown-5 (2.0 mL) and sulfolane (40 mL) was heated at 150 0C and stirred in a sealed tube for 2 hr. After cooling, water (100 mL) was added to the reaction mixture. The mixture was then neutralized with a saturated solution of sodium hydrogencarbonate, and washed with a saturated solution of sodium thiosulfate. The mixture was extracted with diethyl ether (5 x 100 mL). The ether extracts were dried (Na2SO4) and concentrated in vacuo. 2,6-Diiodopyrazine was precipitated with 10 mL of water, filtered, washed with water and pentane to provide a pale yellow powder after lyophilization (2.1 g, 38%). 1H NMR (400 MHz, CDCl3) delta 8.74 (s, 2H); MS (M+H)+ = 332, R1= 1.29 min.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; NOVARTIS AG; NOVARTIS PHARMA GmbH; XENON PHARMACEUTICALS INC; WO2008/24390; (2008); A2;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

S News Extended knowledge of 356783-15-8

The synthetic route of 356783-15-8 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 356783-15-8, name is 3,6-Dichloropyrazine-2-carboxylic acid, A new synthetic method of this compound is introduced below., category: Pyrazines

(b) In 2.0 mL of methylene chloride was suspended 0.2 g of 3,6-dichloro-2-pyrazinecarboxylic acid. Then, 0.001 mL of N,N-dimethylformamide and 0.14 mL of oxalyl chloride were successively added at an ice-cooled temperature, and the mixture thus formed was stirred at room temperature for 40 minutes. The reaction mixture was concentrated to dryness under reduced pressure and then dissolved in 3.0 mL of acetonitrile. Then, 0.3 g of potassium fluoride and 0.056 g of 18-crown-6-ether were added and the mixture thus formed was stirred at 60 C. for 2.5 hours in an atmosphere of nitrogen gas. The reaction mixture was poured into 3.0 mL of methanol, the insoluble matter was filtered off, and then the filtrate was concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography [eluent: n-hexane:ethyl acetate-9:1] to obtain 0.15 g of methyl 3,6-difluoro-2-pyrazinecarboxylate as a colorless oily product.

The synthetic route of 356783-15-8 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Toyama Chemical Co., Ltd.; US2003/130213; (2003); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem