Brief introduction of 2150-55-2

After consulting a lot of data, we found that this compound(2150-55-2)Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid can be used in many types of reactions. And in most cases, this compound has more advantages.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Screening of strains for microbial transformation from DL-ATC to L-cysteine.Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid.

Microorganisms for bioconversion from DL-2-amino-2,3-dihydrothiazole-4-carboxylic acid (DL-ATC) to L-cysteine were isolated from 20 soil samples with DL-ATC as sole N source for isolated plate. Five bacterial strains, GJx5, GJx7, TJ4, TJ6, and TJ7, were screened. Strain GJx7 was the most effective, with the productivity 68.3 μg/mL of L-cysteine. GJx7 was genetically stable; the relative activity for the 8th generation was 95.4%. The optimum conditions for enzyme production in strain GJx7 were as follows: the optimal pH for medium was 7.0, and the optimal loading amount was 50 mL for 250 mL shake flask. The optimal C source and N source were maltose and yeast extract, resp. The productivity of L-cysteine was 320.2 μg/mL under optimum conditions.

After consulting a lot of data, we found that this compound(2150-55-2)Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Analyzing the synthesis route of 2150-55-2

After consulting a lot of data, we found that this compound(2150-55-2)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid can be used in many types of reactions. And in most cases, this compound has more advantages.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas thiazolinophilum: optimal conditions for the enzyme formation and enzymatic reaction, published in 1978-12-31, which mentions a compound: 2150-55-2, mainly applied to Pseudomonas enzyme cysteine, Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid.

Cultivation of P. thiazolinophilum AJ 3854 for the production of the enzyme which could form L-cysteine [52-90-4] from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (I) [2150-55-2] and the reaction conditions of this enzyme were investigated. This enzyme was inducible, intracellular, and growth-associated A marked inactivation of enzyme was observed, especially in the growing phase, but could be prevented by 1∼10 mM Mn2+ or by I as inducer at the mid-logarithmic phase. Enzymic degradation of L-cysteine (or L-cystine [56-89-3]) formed from I could be prevented by the addition of hydroxylamine or semicarbazide. Thus, L-cysteine and L-cystine were quant. produced from I. Optimal pH and temperature of enzymic reaction were 8.2 and 42° (2 h), resp. A sigmoidal reaction curve was observed when intact cells were used as enzyme source, but sonic treatment of cells made the curve linear.

After consulting a lot of data, we found that this compound(2150-55-2)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Some scientific research about 2150-55-2

After consulting a lot of data, we found that this compound(2150-55-2)Safety of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid can be used in many types of reactions. And in most cases, this compound has more advantages.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid(SMILESS: O=C(C1N=C(N)SC1)O,cas:2150-55-2) is researched.Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. The article 《Effects of anoxic conditions on the enzymic conversion of DL-2-aminothiazoline-4-carboxylic acid to L-cystine》 in relation to this compound, is published in Acta Biotechnologica. Let’s take a look at the latest research on this compound (cas:2150-55-2).

The effects of anoxic conditions on product inhibition and the stability of L-2-aminothiazoline-4-carboxylic acid (L-ATC) hydrolase were investigated in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cystine (I) using the cell-free extract enzyme of Pseudomonas sp. in the presence of hydroxylamine. At L-cysteine (II) equivalent levels (I:II = 1:2), I inhibited the L-ATC hydrolase reaction to a greater extent than II. In air, the product occurred predominantly as I (94.9%), whereas in a N2 atm. the product occurred as a mixture of II (39.3%) and I (40.7%). Less product inhibition took place in N. The activity of L-ATC hydrolase was almost fully lost after 20 h of incubation by shaking at 30° in air, but considerable activity remained under the anoxic conditions of N2. A kinetic anal. of the reactions confirmed that reduced product inhibition and enhanced enzyme stability in N2 result in a more efficient enzyme reaction. The inactivation rate constant (k1) was estimated to be 0.11/h in N2 and 0.22/h in air, indicating that the stability of L-ATC hydrolase in N2 was greater than in air. The values of the Kp1 and Kp2 constants related to product inhibition were 43.36 mM and 30.48 mM for II and I, resp., where higher values were an indication of less product inhibition. The value of the rate constant (k2) for the oxidation of II to I was 0.09/h in N2 and 1.01/h in air, suggesting that the II oxidation to I proceeds faster in air than in N2.

After consulting a lot of data, we found that this compound(2150-55-2)Safety of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 91912-53-7

After consulting a lot of data, we found that this compound(91912-53-7)COA of Formula: C8H8N4 can be used in many types of reactions. And in most cases, this compound has more advantages.

COA of Formula: C8H8N4. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 3-(Pyridin-4-yl)-1H-pyrazol-5-amine, is researched, Molecular C8H8N4, CAS is 91912-53-7, about Synthesis and SAR studies of 5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine derivatives as potent inhibitors of Bloom helicase. Author is Rosenthal, Andrew S.; Dexheimer, Thomas S.; Gileadi, Opher; Nguyen, Giang H.; Chu, Wai Kit; Hickson, Ian D.; Jadhav, Ajit; Simeonov, Anton; Maloney, David J..

Human cells utilize a variety of complex DNA repair mechanisms to combat constant mutagenic and cytotoxic threats from both exogenous and endogenous sources. The RecQ family of DNA helicases, which includes Bloom helicase (BLM), plays an important function in DNA repair by unwinding complementary strands of duplex DNA and atypical DNA structures such as Holliday junctions. Mutations of the BLM gene can result in Bloom syndrome, an autosomal recessive disorder associated with cancer predisposition. BLM-deficient cells exhibit increased sensitivity to DNA damaging agents indicating that a selective BLM inhibitor could be useful in potentiating the anticancer activity of these agents. In this work, we describe the medicinal chem. optimization of the hit mol. following a quant. high-throughput screen of >355,000 compounds These efforts lead to the identification of ML216 and related analogs, which possess potent BLM inhibition and exhibit selectivity over related helicases. Moreover, these compounds demonstrated cellular activity by inducing sister chromatid exchanges, a hallmark of Bloom syndrome.

After consulting a lot of data, we found that this compound(91912-53-7)COA of Formula: C8H8N4 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

A new application about 118994-89-1

After consulting a lot of data, we found that this compound(118994-89-1)SDS of cas: 118994-89-1 can be used in many types of reactions. And in most cases, this compound has more advantages.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Ethyl oxazole-5-carboxylate, is researched, Molecular C6H7NO3, CAS is 118994-89-1, about Direct amidation of azoles with formamides via metal-free C-H activation in the presence of tert-butyl perbenzoate, the main research direction is direct amidation azole formamide reactant azolecarboxamide preparation; tertbutyl perbenzoate oxidant amidation azole formamide reactant; cross coupling azolecarboxamide preparation tertbutyl perbenzoate oxidant.SDS of cas: 118994-89-1.

A novel and simple method for the direct amidation of azoles with formamides has been developed. The reaction could occur smoothly in the presence of tert-Bu perbenzoate (TBPB) as an oxidant under metal- and base-free conditions. Direct dehydrogenative cross-coupling of formamides and azoles generated the corresponding products, e.g. I (X = S, R = Me2N, EtNH; X = O, R = 2-MeC6H4NH, Et2N), in good yields.

After consulting a lot of data, we found that this compound(118994-89-1)SDS of cas: 118994-89-1 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The effect of the change of synthetic route on the product 118994-89-1

After consulting a lot of data, we found that this compound(118994-89-1)Name: Ethyl oxazole-5-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: Ethyl oxazole-5-carboxylate( cas:118994-89-1 ) is researched.Name: Ethyl oxazole-5-carboxylate.Li, Chengliang; Li, Pinhua; Yang, Jin; Wang, Lei published the article 《Palladium-catalyzed deamidative arylation of azoles with arylamides through a tandem decarbonylation-C-H functionalization》 about this compound( cas:118994-89-1 ) in Chemical Communications (Cambridge, United Kingdom). Keywords: azole arylamide palladium chemoselective regioselective deamidative arylation; aryl azole preparation; chemoselective regioselective deamidative arylation catalyst palladium. Let’s learn more about this compound (cas:118994-89-1).

A highly chemo-, regio-selective, and efficient palladium-catalyzed deamidative arylation of azoles with arylamides, as an aryl metal equivalent, has been developed. The reaction proceeds smoothly to generate the corresponding products in good yields via a tandem decarbonylation-C-H activation.

After consulting a lot of data, we found that this compound(118994-89-1)Name: Ethyl oxazole-5-carboxylate can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Top Picks: new discover of 118994-89-1

Although many compounds look similar to this compound(118994-89-1)COA of Formula: C6H7NO3, numerous studies have shown that this compound(SMILES:O=C(C1=CN=CO1)OCC), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Direct Arylation of Azoles Enabled by Pd/Cu Dual Catalysis, published in 2021-03-19, which mentions a compound: 118994-89-1, Name is Ethyl oxazole-5-carboxylate, Molecular C6H7NO3, COA of Formula: C6H7NO3.

A practical approach toward the synthesis of 2-arylazoles via direct arylation was described. The transformation relied on a Pd/Cu cocatalyst system that operated with low catalyst loadings. The reaction conditions were found to be tolerant of a wide range of functional groups and nitrogen-containing heterocycles commonly employed in a drug discovery setting.

Although many compounds look similar to this compound(118994-89-1)COA of Formula: C6H7NO3, numerous studies have shown that this compound(SMILES:O=C(C1=CN=CO1)OCC), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Our Top Choice Compound: 2150-55-2

Although many compounds look similar to this compound(2150-55-2)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, numerous studies have shown that this compound(SMILES:O=C(C1N=C(N)SC1)O), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Ninhydrin-positive components derived from cystine during the cyanide-nitroprusside test》. Authors are Hambraeus, Leif; Reio, Lembitu.The article about the compound:2-Amino-4,5-dihydrothiazole-4-carboxylic acidcas:2150-55-2,SMILESS:O=C(C1N=C(N)SC1)O).Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. Through the article, more information about this compound (cas:2150-55-2) is conveyed.

NaCN used in the cyanide-nitroprusside test of Brand et. al to determine cystine (I) in urine (CA 24, 3555) could be effectively replaced by NaBH4 which yielded about the same color intensity as when NaCN was used. However, the color produced by NaBH4 faded very quickly. Studies were made to obtain some qual. and quant. data regarding the ninhydrin-pos. components during the reaction between NaCN, I, and Na nitroprusside by means of an automatic amino acid analyzer. When freshly prepared com. NaCN was used, 2 peaks were obtained (one of I and cysteine). With the addition of NaCN and I, no addnl. peak was found, but a new peak appeared which corresponded to 4-carboxythiazolidinon-2-imide (II) formed due to the cleavage of I. With pure I, peaks of II and another peak of 2-aminothiazoline-4-carboxylic acid appeared.

Although many compounds look similar to this compound(2150-55-2)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, numerous studies have shown that this compound(SMILES:O=C(C1N=C(N)SC1)O), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

What I Wish Everyone Knew About 118994-89-1

Although many compounds look similar to this compound(118994-89-1)Synthetic Route of C6H7NO3, numerous studies have shown that this compound(SMILES:O=C(C1=CN=CO1)OCC), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Ethyl oxazole-5-carboxylate, is researched, Molecular C6H7NO3, CAS is 118994-89-1, about Synthesis and evaluation of anthelmintic and cytotoxic properties of [2,5′]bis-1,3-azole analogs of bengazoles.Synthetic Route of C6H7NO3.

Using different heterocycle formation methodologies (Deoxo-Fluor, DAST, POCl3, TosMIC), [2,5′]bis-1,3-azoles were prepared as stable analogs of bengazoles, a family of potent anthelmintic marine natural products. The cytotoxic activity of these heterocycles and their precursors on HCT-15 cells and the effect on the L4 larvae of Nippostrongylus brasiliensis were evaluated.

Although many compounds look similar to this compound(118994-89-1)Synthetic Route of C6H7NO3, numerous studies have shown that this compound(SMILES:O=C(C1=CN=CO1)OCC), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Chemistry Milestones Of 2150-55-2

Although many compounds look similar to this compound(2150-55-2)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, numerous studies have shown that this compound(SMILES:O=C(C1N=C(N)SC1)O), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about One-step elimination of L-cysteine desulfhydrase from crude enzyme extracts of Pseudomonas sp. TS1138 using an immunomagnetic affinity matrix improves the enzymatic production of L-cysteine.

In this study, a high efficiency immunomagnetic affinity matrix was developed to eliminate L-cysteine desulfhydrase (CD), which decomposes L-cysteine, in crude enzyme extracts from Pseudomonas sp. TS1138. After cloning and expression in Escherichia coli, recombinant CD was purified to raise polyclonal antibodies from mice. The anti-CD antibody was cross-linked to staphylococcal protein A-magnetic cellulose microspheres (MCMS) with di-Me pimelimidate (DMP). The natural CD was eliminated from the crude enzyme extracts by treatment with the cross-linked antibody-protein A-MCMS, resulting in a high level of L-cysteine production The conversion rate of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine increased significantly from 61.9 to 96.2%. The cross-linked antibody-protein A-MCMS showed its durability after repetitive use, maintaining a constant binding capacity for CD during five cycles. This study may lead to a convenient and cost-efficient method to produce L-cysteine by enzymic conversions.

Although many compounds look similar to this compound(2150-55-2)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, numerous studies have shown that this compound(SMILES:O=C(C1N=C(N)SC1)O), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem