New learning discoveries about 1-Chloropyrrolo[1,2-a]pyrazine

According to the analysis of related databases, 136927-64-5, the application of this compound in the production field has become more and more popular.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 136927-64-5, name is 1-Chloropyrrolo[1,2-a]pyrazine, This compound has unique chemical properties. The synthetic route is as follows., Formula: C7H5ClN2

Compound C21 (500 mg, 2.22 mmol), 1-chloropyrrolo[1,2-a]pyrazine (339 mg, 2.22 mmol), cesium carbonate (796 mg, 2.44 mmol), and palladium(ll) acetate (53 mg,0.22 mmol) were combined in 1,4-dioxane (15 mL), and the solution was degassed with nitrogen for 15 minutes. Di-tert-butyl[3,4, 5,6-tetramethyl-2?, 4?,6?-tri(propan-2-yl) bi phenyl2-yl]phosphane (214 mg, 0.444 mmol) was added to the reaction mixture, which wasthen degassed for an additional 2 minutes. The reaction mixture was heated to 100 00 in a microwave reactor for 6 hours, whereupon it was cooled to room temperature andfiltered through diatomaceous earth. The filter cake was washed with ethyl acetate, andthe combined filtrates were concentrated in vacuo. Silica gel chromatography (Gradient:20% to 80% ethyl acetate in heptane) was followed by three triturations with heptane;the resulting material was purified again using silica gel chromatography (Gradient:50% to 70% ethyl acetate in heptane) to provide the product as a pale yellow solid.Yield: 361 mg, 1.06 mmol, 48%; 13. In this case, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene was used in lieu ofdi-teit-butyl[3,4, 5, 6-tetramethyl-2?, 4? ,6?-tri(propan-2-yl)biphenyl-2-yl]phosphane.14. 4-Bromo-3-fluorophenol was protected as its tri(propan-2-yl)]silyl ether, which was converted to [3-fluoro-4-(4,4, 5,5-tetramethyl- 1, 3,2-dioxaborolan-2- yl)phenoxy][tri(propan-2-yl)]silane using the chemistry described for synthesis of C2 from Cl. Suzuki reaction with 5-bromo-6-methylpyrim idine-4-carbonitrile, followed bydesilylation using tetraethylammonium fluoride, afforded the requisite 5-(2-fluoro-4- hydroxyphenyl)-6-methylpyrimidine-4-carbonitrile.

According to the analysis of related databases, 136927-64-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; PFIZER INC.; GRAY, David Lawrence Firman; DAVOREN, Jennifer Elizabeth; DOUNAY, Amy Beth; EFREMOV, Ivan Viktorovich; MENTE, Scot Richard; SUBRAMANYAM, Chakrapani; WO2015/166370; (2015); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extracurricular laboratory: Synthetic route of 5-Methylpyrazine-2-carbaldehyde

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 50866-30-3, name is 5-Methylpyrazine-2-carbaldehyde, A new synthetic method of this compound is introduced below., HPLC of Formula: C6H6N2O

To a solution of N,N- bis(4-methoxybenzyl)ethanesulfonamide (Example 100.0, 73.13 g, 0.21 mol, 1.2 equiv.) in anhydrous THF (600 mL) at -78 C was added n-butyl lithium (83.71 mL, 0.209 mol, 2.5 M solution in hexanes, 1.2 equiv.) slowly via additional funnel, and the resulting mixture was stirred for 10 min. Next, a solution of 5-methylpyrazine-2-carbaldehyde (Example 106.1, 21.3 g, 0.17 mol, 1.0 equiv.) in anhydrous THF (150 mL) was added, and the mixture was stirred at the same temperature for 45 min and then stirred and allowed to warm to RT for 2 h. The reaction mixture was quenched by addition of aqueous ammonium chloride (200 mL) and extracted with EtOAc (2 x 2 L). The combined organic layers were washed with brine (2 x 500 mL) (Note: no product was observed in the ammonium chloride or brine layer). After drying over anhydrous Na2SO4, the filtrate was concentrated in vacuo, to afford the initial product as an oil. The oil thus obtained was purified by flash column chromatography (silica gel, 230-400 mesh) to afford the two isomers. The faster moving isomer (32 g as a white solid) was obtained from the column with a gradient of 10 % to 30 % EtOAc in petroleum ether. 1H NMR (400 MHz, DMSO-d6) delta 8.61 (d, J = 1.5 Hz, 1H), 8.51 (d, J = 1.5 Hz, 1H), 7.22- 7.11 (m, 4H), 6.90- 6.80 (m, 4H), 6.10 (d, J = 5.9 Hz, 1H), 5.29 (dd, J = 5.9, 2.2 Hz, 1H), 4.36- 4.16 (m, 4H), 3.73 (app s, 6H), 3.70-3.66 (m, 1H) 2.50 (merged with solvent peak, 3H) and 1.10 (d, J = 7.0 Hz, 3H). LCMS (ESI positive ion) m/z: 472.4 (M+H)+; Further elution of the mixture with a gradient of 30 % to 35 % EtOAc in petroleum ether yielded Example 106.3 (16 g, pale yellow gummy liquid). 1H NMR (400 MHz, CDCl3) delta 8.62 (d, J = 1.6 Hz, 1H), 8.44 (d, J = 1.5 Hz, 1H), 7.25- 7.12 (m, 4H), 6.93- 6.82 (m, 4H), 5.17 (d, J = 7.1 Hz, 1H), 4.47 (d, J = 15.2 Hz, 3H), 4.14 (d, J = 15.4 Hz, 2H), 3.82 (s, 3H), 3.82 (s, 3H), 3.66- 3.61 (m, 1H), 2.60 (d, J = 2.0 Hz, 3H), and 1.08 (dd, J = 7.2, 2.1 Hz, 3H). LCMS (ESI pos.) m/z: 472.4 (M+H)+.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Yinhong; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HEATH, Julie Anne; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; NISHIMURA, Nobuko; PATTAROPONG, Vatee; SWAMINATH, Gayathri; YEH, Wen-Chen; KREIMAN, Charles; (308 pag.)WO2018/93579; (2018); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of 3,5-Dichloropyrazine-2-carbonitrile

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 313339-92-3, name is 3,5-Dichloropyrazine-2-carbonitrile, A new synthetic method of this compound is introduced below., Formula: C5HCl2N3

To a cooled 0 C suspension of (3S,4S)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4- amine dihydrochloride (4.19 g, 17.2 mmol) in acetonitrile (86 mL) were added Hunig’s base (15.06 mL, 86.0 mmol) and 3,5-dichloropyrazine-2-carbonitrile (3 g, 17.2 mmol). The resulting mixture was stirred at 25C for 1 h. The volatiles were removed under reduced pressure to give a yellow oil which was used without further purification. MS (ES+) C14H18C1N50 requires: 307, found: 308 [M+H] +.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM; JONES, Philip; CROSS, Jason; BURKE, Jason; MCAFOOS, Timothy; KANG, Zhijun; (154 pag.)WO2019/213318; (2019); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Sources of common compounds: Methyl 5-chloropyrazine-2-carboxylate

According to the analysis of related databases, 33332-25-1, the application of this compound in the production field has become more and more popular.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 33332-25-1, name is Methyl 5-chloropyrazine-2-carboxylate, This compound has unique chemical properties. The synthetic route is as follows., Safety of Methyl 5-chloropyrazine-2-carboxylate

Example 7[0142] [Formula 41] [0143]1) In tetrahydrofuran (75 mL) was dissolved methyl 5-chloropyrazin-2-carboxylate (2.589 g), 1M diisobutyl aluminum hydride-tetrahydrofuran solution (30 mL) was added dropwise to the solution at 0C, and the mixture was stirred at the same temperature for 15 minutes. To the mixture were added water and IN hydrochloric acid, then, a saturated aqueous sodium bicarbonate solution was added to the same to make the pH to 7. The mixture was filtered through Celite, and then, extracted with chloroform 3 times. The organic layer was separated, dried over anhydrous sodium sulfate, and the residue obtained by concentrating the same under reduced pressure was purified by silica gel column chromatography (n-hexane: ethyl acetate=90: 10 to 65:35 to 50:50) to obtain (5-chloropyrazin-2-yl)methanol (465 mg). MS (m/z): 147/145 [M+H]+

According to the analysis of related databases, 33332-25-1, the application of this compound in the production field has become more and more popular.

Reference:
Patent; MITSUBISHI TANABE PHARMA CORPORATION; SAKURAI, Osamu; SARUTA, Kunio; HAYASHI, Norimitsu; GOI, Takashi; MOROKUMA, Kenji; TSUJISHIMA, Hidekazu; SAWAMOTO, Hiroaki; SHITAMA, Hiroaki; IMASHIRO, Ritsuo; WO2012/81736; (2012); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Brief introduction of 5-Methylpyrazine-2-carbaldehyde

The chemical industry reduces the impact on the environment during synthesis 5-Methylpyrazine-2-carbaldehyde. I believe this compound will play a more active role in future production and life.

Synthetic Route of 50866-30-3, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 50866-30-3, name is 5-Methylpyrazine-2-carbaldehyde, This compound has unique chemical properties. The synthetic route is as follows.

General procedure: Compound 1a-9a (1.0mmol) was dissolved in toluene (70mL) in a flask which was wrapped with tin foil, sodium hydride (1.5mmol) and triethyl phosphonoacetate (1.0mmol) was added respectively. Then the reaction solution was stirred at room temperature under dark until TLC analysis showed complete conversion. Extracted with EtOAc, the combined organic phase was washed with saturated brine (50mL¡Á3), and dried over anhydrous sodium sulfate. Concentrated and purified by column chromatography (PE/EA=8: 1) to give a pale yellow solid (1b-9b). The synthetic routes are similar to PL [7,12].

The chemical industry reduces the impact on the environment during synthesis 5-Methylpyrazine-2-carbaldehyde. I believe this compound will play a more active role in future production and life.

Reference:
Article; Zou, Yu; Yan, Chang; Zhang, Huibin; Xu, Jinyi; Zhang, Dayong; Huang, Zhangjian; Zhang, Yihua; European Journal of Medicinal Chemistry; vol. 138; (2017); p. 313 – 319;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Some tips on 5-Chloropyrazine-2-carboxylic acid

Statistics shows that 5-Chloropyrazine-2-carboxylic acid is playing an increasingly important role. we look forward to future research findings about 36070-80-1.

Electric Literature of 36070-80-1, These common heterocyclic compound, 36070-80-1, name is 5-Chloropyrazine-2-carboxylic acid, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

A solution of compound 10 (216 mg, 1.36 mmol)in SOCl2 was heated to reflux overnight. The excess SOCl2 wasremoved by vacuum distillation. The residue was dissolved in CH2-Cl2 and carefully treated with a solution of 2-amino-6-methylpiridine(739 mg, 6.83 mmol) and NEt3 (275 mg, 2.7 mmol) in CH2Cl2.The mixture was stirred at rt overnight. After the reaction wascompleted, the mixture was extracted with CH2Cl2, washed withwater, brine, and dried over Na2SO4. The organic phase was concentratedin vacuo and the residue was recrystallized from 2-propanolto give compound 11a as a yellow solid (181 mg, 53%). 1HNMR (300 MHz, CDCl3) d: 9.96 (br s, 1H), 9.28 (s, 1H), 8.60 (s,1H), 8.19 (d, J = 9.0 Hz, 1H), 7.68 (t, J = 9.0 Hz, 1H), 6.99 (d,J = 9.0 Hz, 1H), 2.51 (s, 3H).

Statistics shows that 5-Chloropyrazine-2-carboxylic acid is playing an increasingly important role. we look forward to future research findings about 36070-80-1.

Reference:
Article; Zhao, Chao; Choi, You Hee; Khadka, Daulat Bikram; Jin, Yifeng; Lee, Kwang-Youl; Cho, Won-Jea; Bioorganic and Medicinal Chemistry; vol. 24; 4; (2016); p. 789 – 801;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The important role of Methyl 3-methylpyrazine-2-carboxylate

According to the analysis of related databases, 41110-29-6, the application of this compound in the production field has become more and more popular.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 41110-29-6, name is Methyl 3-methylpyrazine-2-carboxylate, This compound has unique chemical properties. The synthetic route is as follows., Application In Synthesis of Methyl 3-methylpyrazine-2-carboxylate

A solution of methyl 3-methylpyrazine-2- carboxylate (265A, 9.1 g, 59.8 mmol) in DCM (100 mL) was cooled to 0 C was added urea hydrogen peroxide adduct (7.8 g, 83.0 mmol), followed by dropwise addition of trifluoroacetic acid anhydride (10.8 mL, 78.0 mmol). The resulting mixture was stirred at 0 C for 1 h, and at RT for 18 h, during which LCMS indicated a mixture of two peaks corresponding to MS m/z = 169.0 [M+H]+. The reaction was diluted with DCM and quenched with saturated Na2SO3 solution; the aqueous layer was back-extracted with DCM (2 x). The combined organic extracts were dried (MgSO4), filtered and concentrated in vacuo. ISCO purification (20-80% EtOAc/hexanes) afforded a mixture of two regioisomers, containing 3-(methoxycarbonyl)-2-methylpyrazine 1 -oxide and 2- (methoxycarbonyl)-3-methylpyrazine 1 -oxide (5.2 g, 30.9 mmol, 51.7% yield). The mixture of regioisomers was taken to next step without further purification. MS m/z = 169.0 [M+H]+. A solution of the mixture of 3-(methoxycarbonyl)-2-methylpyrazine 1 – oxide and 2-(methoxycarbonyl)-3-methylpyrazine 1 -oxide (5.1 g, 15.2 mmol) in toluene (50 mL) was cooled to 0 C and phosphorus oxychloride (2.8 mL, 30.3 mmol) was added under nitrogen followed by DMF (0.12 mL, 1.52 mmol). The reaction mixture was stirred at RT for 4 h, and heated to 65 C for 18 h, cooled to RT, diluted with EtOAc and washed with saturated NaHCO3 solution. The aqueous layer was back-extracted with EtOAc (2 x). The combined organic extracts were dried (MgSO4), filtered and concentrated in vacuo. ISCO purification (0-50% EtOAc/hexanes) with care afforded both isomers: methyl 5-chloro-3-methylpyrazine-2-carboxylate (265B, 0.68 g) (minor product) denoted by peak 1 and methyl 6-chloro-3-methylpyrazine-2-carboxylate (265B1, 1.50 g) (major product) denoted by peak 2. MS m/z = 187.0 [M+H]+. Peak 1 : 1H NMR (300 MHz, DMSO-d6) delta 8.73 (s, 1 H), 3.91 (s, 3H), 2.71 (s, 3H). Peak 2: 1H NMR (300 MHz, DMSO-d6) delta 8.89 (s, 1 H), 3.91 (s, 3H), 2.71 (s, 3H).

According to the analysis of related databases, 41110-29-6, the application of this compound in the production field has become more and more popular.

Reference:
Patent; AMGEN INC.; ALLEN, Jennifer R.; AMEGADZIE, Albert; BOURBEAU, Matthew P.; BROWN, James A.; CHEN, Jian J.; CHENG, Yuan; FROHN, Michael J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul E.; LIU, Longbin; LIU, Qingyian; LOW, Jonathan D.; MA, Vu Van; MANNING, James; MINATTI, Ana Elena; NGUYEN, Thomas T.; NISHMURA, Nobuko; NORMAN, Mark H.; PETTUS, Liping H.; PICKRELL, Alexander J.; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert M.; SIEGMUND, Aaron C.; STEC, Markian M.; WHITE, Ryan; XUE, Qiufen; (759 pag.)WO2016/22724; (2016); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Research on new synthetic routes about Methyl 5-chloropyrazine-2-carboxylate

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 33332-25-1, name is Methyl 5-chloropyrazine-2-carboxylate, A new synthetic method of this compound is introduced below., Quality Control of Methyl 5-chloropyrazine-2-carboxylate

Example 29 5- [2 (R)- (3-CHLORO-4-METHANESULFONYL-PHENYL)-3-CYCLOPENTYL-PROPIONYLAMINO]- PYRAZINE-2-CARBOXYLIC acid HYDROXYAMIDE [000197] A solution of methyl 5-chloropyrazine-2-carboxylate (30.00 g, 0.17 mol) in tetrahydrofuran (87 mL) was treated with a solution of potassium carbonate (72.08 g, 0.52 mol) in water (261 mL). The resulting reaction mixture stirred at 25C for 42 h. The reaction mixture was then acidified to a pH of about 2 with concentrated hydrochloric acid, diluted with a saturated aqueous sodium chloride solution (300 mL), and was continuously extracted with ethyl acetate (4L total) until no product was present in the aqueous layer. The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo to afford 5-chloro-pyrazine-2-carboxylic acid (26.54 g, 96%) as an off-white solid: mp 150-151C ; EI-HRMS m/e calcd for CSH3CIN202 (M 157.9883, found 157.9877.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; WO2004/52869; (2004); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Application of 8-Chloro[1,2,4]triazolo[4,3-a]pyrazine

The synthetic route of 68774-77-6 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 68774-77-6, name is 8-Chloro[1,2,4]triazolo[4,3-a]pyrazine belongs to Pyrazines compound, it is a common compound, a new synthetic route is introduced below. category: Pyrazines

The following examples in Table I were prepared by Methods A (Scheme 7), B (Scheme 8) or C (Scheme 9) and/or steps analogous to those described in Examples 6, 9, 11 and 21-23 above.Scheme 7 illustrates how one may construct the R1 to amine-backbone bond, where R1, as shown, is an aromatic moiety. Intermediate 8′ can be heated in a microwave oven with a desirably substituted chloro-substituted aromatic compound 18 in the presence of a suitable base, such as dnsopropylethylamine (DIEA) in a suitable solvent, such as isopropyl alcohol (IPA) to afford the desired product compound 19 of Formula I or II.

The synthetic route of 68774-77-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AMGEN INC.; WO2009/64418; (2009); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Continuously updated synthesis method about 2-Bromo-5H-pyrrolo[2,3-b]pyrazine

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 875781-43-4, name is 2-Bromo-5H-pyrrolo[2,3-b]pyrazine, A new synthetic method of this compound is introduced below., category: Pyrazines

General procedure: 2-Bromo-5H-pyrrolo[3,2-b]pyrazine(4; 0.471 g,2.39 mmol), 4-pyridylboronic acid (0.58 g, 4.72 mmol), dichloro 1,1′-bis(diphenylphosphino)ferrocenepalladium (II) dichloromethane adduct (0.097 g, 0.12 mmol), acetonitrile(3 mL) and 1M sodium carbonate (3 mL) were placed in a 10 mL CEM microwavevial. The vial was capped and irradiated in a CEM microwave reactor for 30minutes at 150 C.Water (3 mL) and ethyl acetate (9 mL) were added the layers were partitioned. Theaqueous layer was extracted with ethyl acetate (2 x 10 mL). The combined organicextracts were washed with saturated sodium chloride (5 mL), dried over MgSO4and concentrated under reduced pressure. The residue was purified by preparativereverse phase HPLC to give 2-(pyridin-4-yl)-5H-pyrrolo[2,3-b]pyrazine(14; 0.28 g,60%) as an off white solid: 1H NMR (400 MHz, DMSO-d6) delta 12.24 (s, 1H), 9.00(s, 1H), 8.69 (dd, J = 4.5, 1.6 Hz, 2H), 8.12 (dd, J = 4.5, 1.6Hz, 2H), 7.98 (d, J = 3.6 Hz, 1H), 6.74 (d, J = 3.6 Hz, 1H); ESMSm/z 197.1 (M+1).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Article; Burdick, Daniel J.; Wang, Shumei; Heise, Christopher; Pan, Borlan; Drummond, Jake; Yin, Jianping; Goeser, Lauren; Magnuson, Steven; Blaney, Jeff; Moffat, John; Wang, Weiru; Chen, Huifen; Bioorganic and Medicinal Chemistry Letters; vol. 25; 21; (2015); p. 4728 – 4732;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem