Properties and Exciting Facts About 591-54-8

Here is just a brief introduction to this compound(591-54-8)SDS of cas: 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 4-Aminopyrimidine, is researched, Molecular C4H5N3, CAS is 591-54-8, about Structure-Guided Discovery of Silicon-Containing Subnanomolar Inhibitor of Hydroxyphenylpyruvate Dioxygenase as a Potential Herbicide, the main research direction is triketonequinazolinedione preparation hydroxyphenylpyruvate dioxygenase inhibitor herbicide; crop safety weed control wheat peanut MBQ derivative; 4-dione; herbicide; hydrophobic interaction; hydroxyphenylpyruvate dioxygenase; lead optimization; quinazoline-2.SDS of cas: 591-54-8.

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been recognized as one of the most promising targets in the field of herbicide innovation considering the severity of weed resistance currently. In a persistent effort to develop effective HPPD-inhibiting herbicides, a structure-guided strategy was carried out to perform the structural optimization for triketone-quinazoline-2,4-diones, a novel HPPD inhibitor scaffold first discovered in our laboratory Herein, starting from the crystal structure of Arabidopsis thaliana (At)HPPD complexed with 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(o-tolyl)quinazoline-2,4(1H,3H)-dione (MBQ), three subseries of quinazoline-2,4-dione derivatives were designed and prepared by optimizing the hydrophobic interactions between the side chain of the core structure at the R1 position and the hydrophobic pocket at the active site entrance of AtHPPD. 6-(2-Hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(3-(trimethylsilyl)prop-2-yn-1-yl)quinazoline-2,4(1H,3H)-dione (I) with the best inhibitory activity against AtHPPD was identified to be the first subnanomolar-range AtHPPD inhibitor (Ki = 0.86 nM), which significantly outperformed that of the lead compound MBQ (Ki = 8.2 nM). Further determination of the crystal structure of AtHPPD in complex with compound 60 (1.85 Å) and the binding energy calculation provided a mol. basis for the understanding of its high efficiency. Addnl., the greenhouse assay indicated that 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-propylquinazoline-2,4(1H,3H)-dione (II) and compound I showed acceptable crop safety against peanut and good herbicidal activity with a broad spectrum. Moreover, compound II also showed superior selectivity for wheat at the dosage of 120 g ai/ha and favorable herbicidal efficacy toward the gramineous weeds at the dosage of as low as 30 g ai/ha. We believe that compounds II and I have promising prospects as new herbicide candidates for wheat and peanut fields.

Here is just a brief introduction to this compound(591-54-8)SDS of cas: 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Application of 591-54-8

Here is just a brief introduction to this compound(591-54-8)Application of 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 591-54-8, is researched, SMILESS is C1=CN=CN=C1N, Molecular C4H5N3Journal, Article, Journal of Organic Chemistry called Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide – Functional Groups Tolerance, Scope, and Limitations, Author is Popov, Kirill K.; Campbell, Joanna L. P.; Kysilka, Ondrej; Hosek, Jan; Davies, Christopher D.; Pour, Milan; Kocovsky, Pavel, the main research direction is aldimine preparation green chem; aldehyde amine preparation reductive amination DMF catalyst.Application of 591-54-8.

Aldimines R1CH2NHR2 (R1 = but-3-yn-1-yl, Ph, thiophen-2-yl, etc.; R2 = Bu, Bn, cyclohexyl, 5-methyl-1,3,4-thiadiazol-2-yl, etc.), generated in situ from aliphatic, aromatic, and heteroaromatic aldehydes R1CHO and aliphatic, aromatic, and heteroaromatic primary or secondary amines R2NH2, can be reduced with trichlorosilane in the presence of DMF (DMF) as an organocatalyst (≤10 mol%) in toluene or CH2Cl2 at room temperature The reduction tolerates ketone carbonyls, esters, amides, nitriles, sulfones, sulfonamides, NO2, SF5, and CF3 groups, boronic esters, azides, phosphine oxides, C=C and CC bonds, and ferrocenyl nucleus but sulfoxides and N-oxides are reduced. α,β-Unsaturated aldimines undergo 1,2-reduction only, leaving the C=C bond intact. N-Monoalkylation of primary amines is attained with a 1:1 aldehyde to amine ratio, whereas excess of the aldehyde (≥2:1) allows second alkylation, giving rise to tertiary amines. Reductive N-alkylation of α-amino acids proceeds without racemization; the resulting products, containing a CC bond or N3 group, are suitable for click chem. This reaction thus offers advantages over the traditional methods (borohydride reduction or catalytic hydrogenation) in terms of efficiency and chemoselectivity. Solubility of some of the reacting partners appears to be the only limitation. The byproducts generated by the workup with aqueous NaHCO3 (i.e., NaCl and silica) are environmentally benign. As a greener alternative, DMA can be employed as a catalyst instead of DMF.

Here is just a brief introduction to this compound(591-54-8)Application of 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The effect of the change of synthetic route on the product 591-54-8

Here is just a brief introduction to this compound(591-54-8)Reference of 4-Aminopyrimidine, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Wu, Peng; Bjoern-Yoshimoto, Walden E.; Staudt, Markus; Jensen, Anders A.; Bunch, Lennart researched the compound: 4-Aminopyrimidine( cas:591-54-8 ).Reference of 4-Aminopyrimidine.They published the article 《Identification and Structure-Activity Relationship Study of Imidazo[1,2-a]pyridine-3-amines as First Selective Inhibitors of Excitatory Amino Acid Transporter Subtype 3 (EAAT3)》 about this compound( cas:591-54-8 ) in ACS Chemical Neuroscience. Keywords: imidazopyridineamine preparation inhibitor excitatory amino acid transporter subtype EAAT3; EAAT3; EAAT3 inhibitors; Glutamate; excitatory amino acid transporter. We’ll tell you more about this compound (cas:591-54-8).

Screening of a library of 49,087 compounds at the excitatory amino acid transporter subtype 3 (EAAT3) led to the identification of 2-(furan-2-yl)-8-methyl-N-(o-tolyl)imidazo[1,2-a]pyridin-3-amine which showed a >20-fold preference for inhibition of EAAT3 (IC50 = 13 μM) over EAAT1,2,4 (EAAT1: IC50 ∼ 250 μM; EAAT2,4: IC50 > 250 μM). A small lipophilic substituent (Me or bromine) at the 7- and/or 8-position was essential for activity. Furthermore, the substitution pattern of the o-tolyl group (compound I) and the chem. nature of the substituent in the 2-position of tert-Bu 3-(8-bromo-7-methyl-3-(o-tolylamino)imidazo[1,2-a]pyridin-2-yl)azetidine-1-carboxylate are essential for the selectivity toward EAAT3 over EAAT1,2. The most prominent analogs to come out of this study are 2-(furan-2-yl)-8-methyl-N-(o-tolyl)imidazo[1,2-a]pyridin-3-amine and 8-Bromo-2-(furan-2-yl)-N-(o-tolyl)imidazo[1,2-a]pyridin-3-amine that display ∼35-fold selectivity for EAAT3 (IC50 = 7.2 μM) over EAAT1,2,4 (IC50 ∼ 250 μM).

Here is just a brief introduction to this compound(591-54-8)Reference of 4-Aminopyrimidine, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Research on new synthetic routes about 591-54-8

Here is just a brief introduction to this compound(591-54-8)Recommanded Product: 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Nuclear Spin Hyperpolarization of NH2- and CH3-Substituted Pyridine and Pyrimidine Moieties by SABRE, published in 2020-10-01, which mentions a compound: 591-54-8, mainly applied to pyridine pyrimidine nuclear spin hyperpolarization SABRE; NMR spectroscopy; SABRE; hyperpolarization; para-hydrogen; substituent effects, Recommanded Product: 591-54-8.

Hyperpolarization of N-heterocycles with signal amplification by reversible exchange (SABRE) induces NMR sensitivity gains for biol. mols. Substitutions with functional groups, in particular in the ortho-position of the heterocycle, however, result in low polarization using a typical Ir catalyst with a bis-mesityl N-heterocyclic carbene ligand for SABRE, presumably due to steric hindrance. With the addition of allylamine or acetonitrile as coligands to the precatalyst chloro(1,5-cyclooctadiene)[4,5-dimethyl-1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] iridium, the 1H signal enhancement increased in several substrates with ortho NH2 substitutions. For example, for a proton in 2,4-diaminopyrimidine, the enhancement factors increased from -7±1 to -210±20 with allylamine or to -160±10 with acetonitrile. CH3 substituted mols. yielded maximum signal enhancements of -25±7 with acetonitrile addition, which is considerably less than the corresponding NH2 substituted mols., despite exhibiting similar steric size. With the more electron-donating NH2 substitution resulting in greater enhancement, it is concluded that steric hindrance is not the only dominant factor in determining the polarizability of the CH3 substituted compounds The addition of allylamine increased the signal enhancement for the 290 Da trimethoprim, a mol. with a 2,4-diaminopyrimidine moiety serving as an antibacterial agent, to -70.

Here is just a brief introduction to this compound(591-54-8)Recommanded Product: 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of 591-54-8

Here is just a brief introduction to this compound(591-54-8)Computed Properties of C4H5N3, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 4-Aminopyrimidine( cas:591-54-8 ) is researched.Computed Properties of C4H5N3.Abdelaziz, Ahmed M.; Basnet, Sunita K. C.; Islam, Saiful; Li, Manjun; Tadesse, Solomon; Albrecht, Hugo; Gerber, Cobus; Yu, Mingfeng; Wang, Shudong published the article 《Synthesis and evaluation of 2’H-spiro[cyclohexane-1,3′-imidazo[1,5-a]pyridine]-1′,5′-dione derivatives as Mnk inhibitors》 about this compound( cas:591-54-8 ) in Bioorganic & Medicinal Chemistry Letters. Keywords: spiro cyclohexane imidazopyridine dione preparation chemoselective antitumor Mnk inhibitor; Anti-cancer; Inhibitor; Mnk; eFT508; eIF4E. Let’s learn more about this compound (cas:591-54-8).

A series of 2’H-spiro[cyclohexane-1,3′-imidazo[1,5-a]pyridine]-1′,5′-dione derivatives I (R = pyridin-4-yl, pyrimidin-4-yl, oxazol-2-yl, etc.) is presented as Mnk inhibitors. Some of them showed sub-micromolar to low nanomolar inhibitory activities against Mnk1/2 with a high level of selectivity for both kinases over CDKs. Biochem. assays revealed that compounds I (R = pyridin-4-yl, pyrimidin-4-yl) are non-ATP-competitive inhibitors of Mnks. Lead compound I (R = pyrimidin-4-yl) demonstrated a high selectivity for Mnk1/2 over a selection of 51 kinases, and displayed anti-proliferative activities against a panel of cancer cell lines. However, this compound in combination with our inhouse CDK4/6 inhibitor 83 did not show a synergistic effect in A2780 ovarian cancer cells, suggesting that caution be exercised in the selection of an agent to be combined with an Mnk inhibitor.

Here is just a brief introduction to this compound(591-54-8)Computed Properties of C4H5N3, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Something interesting about 591-54-8

Here is just a brief introduction to this compound(591-54-8)Related Products of 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, General Review, Article, Review, Molecules called Synthetic Strategies of Pyrimidine-Based Scaffolds as Aurora Kinase and Polo-like Kinase Inhibitors, Author is Jadhav, Mrunal; Sankhe, Kaksha; Bhandare, Richie R.; Edis, Zehra; Bloukh, Samir Haj; Khan, Tabassum Asif, which mentions a compound: 591-54-8, SMILESS is C1=CN=CN=C1N, Molecular C4H5N3, Related Products of 591-54-8.

A review. Small mols. containing heterocyclic moieties have attracted considerable interest for designing new antitumor agents. Of these, the pyrimidine ring system is found in multitude of drug structures, and being the building unit of DNA and RNA makes it an attractive scaffold for the design and development of anticancer drugs. Currently, 22 pyrimidine-containing entities are approved for clin. use as anticancer drugs by the FDA. An exhaustive literature search indicates several publications and more than 59 patents from the year 2009 onwards on pyrimidine derivatives exhibiting potent antiproliferative activity. These pyrimidine derivatives exert their activity via diverse mechanisms, one of them being inhibition of protein kinases. Aurora kinase (AURK) and polo-like kinase (PLK) are protein kinases involved in the regulation of the cell cycle. Within the numerous pyrimidine-based small mols. developed as anticancer agents, this review focuses on the pyrimidine fused heterocyclic compounds modulating the AURK and PLK proteins in different phases of clin. trials as anticancer agents. This article aims to provide a comprehensive overview of synthetic strategies for the preparation of pyrimidine derivatives and their associated biol. activity on AURK/PLK. It will also present an overview of the synthesis of the heterocyclic-2-aminopyrimidine, 4-aminopyrimidine and 2,4-diaminopyrimidine scaffolds, and one of the pharmacophores in AURK/PLK inhibitors is described systematically.

Here is just a brief introduction to this compound(591-54-8)Related Products of 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The effect of the change of synthetic route on the product 591-54-8

Here is just a brief introduction to this compound(591-54-8)Name: 4-Aminopyrimidine, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Singh, Baljinder; Diaz-Gonzalez, Rosario; Ceballos-Perez, Gloria; Rojas-Barros, Domingo I.; Gunaganti, Naresh; Gillingwater, Kirsten; Martinez-Martinez, Maria Santos; Manzano, Pilar; Navarro, Miguel; Pollastri, Michael P. published the article 《Medicinal Chemistry Optimization of a Diaminopurine Chemotype: Toward a Lead for Trypanosoma brucei Inhibitors》. Keywords: diaminopurine chemotype optimization preparation Trypanosoma brucei structure.They researched the compound: 4-Aminopyrimidine( cas:591-54-8 ).Name: 4-Aminopyrimidine. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:591-54-8) here.

Human African trypanosomiasis (HAT), or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and transmitted through the bite of infected tsetse flies. The disease is considered fatal if left untreated. To identify new chemotypes against Trypanosoma brucei, previously we identified 797 potent kinase-targeting inhibitors grouped into 59 clusters plus 53 singleton compounds with at least 100-fold selectivity over HepG2 cells. From this set of hits, a cluster of diaminopurine-derived compounds was identified. Herein, we report our medicinal chem. investigation involving the exploration of structure-activity and structure-property relationships around one of the high-throughput screening (HTS) hits, N2-(thiophen-3-yl)-N6-(2,2,2-trifluoroethyl)-9H-purine-2,6-diamine (1, NEU-1106). This work led to the identification of a potent lead compound (4aa, NEU-4854) with improved in vitro absorption, distribution, metabolism, and excretion (ADME) properties, which was progressed into proof-of-concept translation of in vitro antiparasitic activity to in vivo efficacy.

Here is just a brief introduction to this compound(591-54-8)Name: 4-Aminopyrimidine, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Archives for Chemistry Experiments of 591-54-8

Here is just a brief introduction to this compound(591-54-8)Electric Literature of C4H5N3, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Electric Literature of C4H5N3. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 4-Aminopyrimidine, is researched, Molecular C4H5N3, CAS is 591-54-8, about Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil. Author is Wang, Bin; He, Zhixia; Zhang, Bo; Duan, Yibing.

Hydrothermal liquefaction (HTL) is an effective conversion technol. of microalgae biomass. In this study, the low-lipid microalgae-spirulina platensis was used as feedstock to investigate the performance of the biochar-based catalysts on HTL. The byproduct of spirulina platensis HTL-solid residue was collected and activated to obtain the biochar (BC). Then, the BC was used as the carrier to support Co, Ni and their oxides CoOx and NiO to form Co/BC, Ni/BC, CoOx/BC, NiO/BC catalysts. The Response Surface Methodol. (RSM) was used to optimize the HTL parameters and investigate the effect of biochar-based catalysts on HTL. The results showed that the maximum yield of bio-oil catalyzed by BC was 35.80 wt% with 304 °C, 34.7 min, and 0.32 g catalyst loading. BC catalyst displayed an improvement of bio-oil yield up to 4.00 wt% at low temperatures (260-280 °C). Ni/BC was the most favorable catalyst for bio-oil production, reaching a maximum value of 36.57 wt% at 280 °C, 35.0 min, and 0.15 g catalyst loading, which increased by 6.40 wt% compared with the non catalytic case. The characterization of bio-oil showed that CoOx/BC and NiO/BC could raise the hydrocarbon content, H/C value, and heat value, while decrease O/C value. Ni/BC had an excellent denitrification effect on bio-oil, the N content was reduced by nearly 2.00 wt% compared with the non catalytic case.

Here is just a brief introduction to this compound(591-54-8)Electric Literature of C4H5N3, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 591-54-8

Here is just a brief introduction to this compound(591-54-8)Safety of 4-Aminopyrimidine, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Energy (Oxford, United Kingdom) called Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil, Author is Wang, Bin; He, Zhixia; Zhang, Bo; Duan, Yibing, which mentions a compound: 591-54-8, SMILESS is C1=CN=CN=C1N, Molecular C4H5N3, Safety of 4-Aminopyrimidine.

Hydrothermal liquefaction (HTL) is an effective conversion technol. of microalgae biomass. In this study, the low-lipid microalgae-spirulina platensis was used as feedstock to investigate the performance of the biochar-based catalysts on HTL. The byproduct of spirulina platensis HTL-solid residue was collected and activated to obtain the biochar (BC). Then, the BC was used as the carrier to support Co, Ni and their oxides CoOx and NiO to form Co/BC, Ni/BC, CoOx/BC, NiO/BC catalysts. The Response Surface Methodol. (RSM) was used to optimize the HTL parameters and investigate the effect of biochar-based catalysts on HTL. The results showed that the maximum yield of bio-oil catalyzed by BC was 35.80 wt% with 304 °C, 34.7 min, and 0.32 g catalyst loading. BC catalyst displayed an improvement of bio-oil yield up to 4.00 wt% at low temperatures (260-280 °C). Ni/BC was the most favorable catalyst for bio-oil production, reaching a maximum value of 36.57 wt% at 280 °C, 35.0 min, and 0.15 g catalyst loading, which increased by 6.40 wt% compared with the non catalytic case. The characterization of bio-oil showed that CoOx/BC and NiO/BC could raise the hydrocarbon content, H/C value, and heat value, while decrease O/C value. Ni/BC had an excellent denitrification effect on bio-oil, the N content was reduced by nearly 2.00 wt% compared with the non catalytic case.

Here is just a brief introduction to this compound(591-54-8)Safety of 4-Aminopyrimidine, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

You Should Know Something about 591-54-8

Compound(591-54-8)Recommanded Product: 4-Aminopyrimidine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(4-Aminopyrimidine), if you are interested, you can check out my other related articles.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Recent progress in small-molecule inhibitors for critical therapeutic targets of necroptosis, published in 2021, which mentions a compound: 591-54-8, Name is 4-Aminopyrimidine, Molecular C4H5N3, Recommanded Product: 4-Aminopyrimidine.

A review. Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-mol. inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.

Compound(591-54-8)Recommanded Product: 4-Aminopyrimidine received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(4-Aminopyrimidine), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem