Some tips on 6164-79-0

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 6164-79-0.

These common heterocyclic compound, 6164-79-0, name is Methyl 2-pyrazinecarboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. 6164-79-0

The 4- (3-CHLORO-4- (2-PYAZINYLMETHOXY) anilino) -5-fluoroquinazoline used as starting material was obtained as follows: Methylpyrazine carboxylate (8.5g) was stirred in water (200 ml) and sodium borohydride (11.65 g) was added in one portion, resulting in a vigorous exotherm. The reaction mixture was stirred vigorously for 30 minutes, and then ethanol (80 ML) and saturated potassium carbonate (150 ml) were added. The mixture was stirred for 30 minutes and then extracted with ethyl acetate (5 x 150 ml) and DCM (5 x 150 ml). The combined extracts were dried and concentrated to give pyrazin-2-ylmethanol as a yellow oil (5.43 g, 80%), which was used without purification; NMR spectrum (DMSO-D6) 4.65 (s, 2H), 5.57 (br s, 1H), 8.54 (d, 2H), 8.71 (s, 1H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 6164-79-0.

Reference:
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2004/93880; (2004); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Sources of common compounds: 6164-79-0

Statistics shows that Methyl 2-pyrazinecarboxylate is playing an increasingly important role. we look forward to future research findings about 6164-79-0.

6164-79-0, Name is Methyl 2-pyrazinecarboxylate, 6164-79-0, belongs to Pyrazines compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows.

Methyl 3-oxo-3-(pyrazin-2-yl)propanoate: To a stirred solution of sodium methoxide (25% in MeOH, 27.54 mL, 72.4 mmol, 1 eq) in 90 mL of toluene at 110 C. in a 3-neck flask attached with a mechanical stirrer, condenser and dropping funnel was added a solution of methylpyrazine-2-carboxylate (10 g, 72.4 mmol, 1 eq) in 115 mL of methyl acetate, dropwise, over a period of ?35-40 min. A yellow precipitate was formed. Stirring was continued at 110 C. for 3 hrs. The reaction was cooled and the yellow precipitate was filtered and washed with a small quantity of toluene. This solid was taken into 200 mL of saturated ammonium chloride and 400 mL of EtOAc. The aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over magnesium sulfate, filtered and evaporated to give 6.52 g (50%) of methyl 3-oxo-3-(pyrazin-2-yl)propanoate as a yellow solid.

Statistics shows that Methyl 2-pyrazinecarboxylate is playing an increasingly important role. we look forward to future research findings about 6164-79-0.

Reference:
Patent; Hoffmann-La Roche Inc; Bhagirath, Niala; Brameld, Kenneth Albert; Kennedy-Smith, Joshua; US2013/90334; (2013); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of Methyl 2-pyrazinecarboxylate

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 6164-79-0, name is Methyl 2-pyrazinecarboxylate, A new synthetic method of this compound is introduced below., 6164-79-0

Step 2; Lithium aluminum hydride (40.0 mg, 1.06 mmol) was suspended in tetrahydrofuran (1.0 mL). To this, a solution of methyl 2-pyrazinecarboxylate (66.0 mg, 0.478 mmol) in tetrahydrofuran (0.5 mL) was added dropwise under a nitrogen atmosphere at 0 C. and the mixture was stirred at the same temperature for 15 minutes. Then, water (40 muL), a 15% aqueous sodium hydroxide solution (40 muL) and water (120 muL) were successively added to the reaction mixture and the mixture was stirred at room temperature for 1 hour. The mixture was filtered through Celite and the mother liquid was concentrated. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1) to give 2-pyrazinemethanol (Compound CD) (19.0 yield: 36%).1H-NMR (270 MHz, CDCl3, delta): 3.11 (brd, J=5.6 Hz, 1H), 4.85 (d, J=5.6 Hz, 1H), 8.52-8.55 (m, 2H), 8.64 (s, 1H).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; Amishiro, Nobuyoshi; Fukuda, Yuichi; Kinpara, Keisuke; Mie, Motoya; Tagaya, Hisashi; Takahashi, Takeshi; US2011/237584; (2011); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Introduction of a new synthetic route about Methyl 2-pyrazinecarboxylate

According to the analysis of related databases, 6164-79-0, the application of this compound in the production field has become more and more popular.

6164-79-0, Adding a certain compound to certain chemical reactions, such as: 6164-79-0, name is Methyl 2-pyrazinecarboxylate, belongs to Pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 6164-79-0.

Methyl 3-oxo-3-(pyrazin-2-yl)propanoate: To a stirred solution of sodium methoxide (25% in MeOH, 27.54 mL, 72.4 mmol, 1 eq) in 90 mL of toluene at 110 C. in a 3-neck flask attached with a mechanical stirrer, condenser and dropping funnel was added a solution of methylpyrazine-2-carboxylate (10 g, 72.4 mmol, 1 eq) in 115 mL of methyl acetate, dropwise, over a period of ?35-40 min. A yellow precipitate was formed. Stirring was continued at 110 C. for 3 hrs. The reaction was cooled and the yellow precipitate was filtered and washed with a small quantity of toluene. This solid was taken into 200 mL of saturated ammonium chloride and 400 mL of EtOAc. The aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over magnesium sulfate, filtered and evaporated to give 6.52 g (50%) of methyl 3-oxo-3-(pyrazin-2-yl)propanoate as a yellow solid.

According to the analysis of related databases, 6164-79-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Hoffmann-La Roche Inc.; Bhagirath, Niala; Brameld, Kenneth Albert; Kennedy-Smith, Joshua; US2013/90333; (2013); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Sources of common compounds: 6164-79-0

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 6164-79-0, its application will become more common.

Some common heterocyclic compound, 6164-79-0, name is Methyl 2-pyrazinecarboxylate, molecular formula is C6H6N2O2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. 6164-79-0

a 2-Hydroxymethylpyrazine To methyl 2-pyrazinecarboxylate (1.80 g) in THF (60 ml) was added diisobutylaluminium hydride (1 M solution in THF; 39 ml) at -78 C. with stirring. The solution was allowed to warm to room temperature, and stirred for 24 h. The reaction was quenched with solid tartaric acid, then aqueous sodium potassium tartrate, and stirred for 30 min at room temperature. Saturated aqueous sodium hydrogen carbonate was added until the pH of the solution was >7. The solution was washed with ethyl acetate (3*200 ml), and the organic layers combined, washed with saturated sodium chloride solution (1*200 ml), dried (magnesium sulfate) and concentrated in vacuo. The residue was purified by flash chromatography (silica gel, eluent =5% methanol in dichloromethane) to yield 2-hydroxymethylpyrazine as a dark brown oil (0.16 g). 1H NMR (250 MHz, CDCs) delta3.42 (1 H, br s), 4.85 (2 H, s), 8.55 (2 H, m), 8.68 (1 H, s); MS (ES+) m/e 111 [MH+].

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 6164-79-0, its application will become more common.

Reference:
Patent; Merck Sharp & Dohme Limited; US6255305; (2001); B1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 6164-79-0

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 6164-79-0.

6164-79-0, These common heterocyclic compound, 6164-79-0, name is Methyl 2-pyrazinecarboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

Method 54; Pvrazine-2-carboxaldehyde oxime A IN solution of lithium aluminium hydride in THF (73. 8ml, 73.8mmol) was added to a suspension of methyl pyrazine-2-carboxylate (20g, 145mmol) in anhydrous THF (300. 0ml) at-78¡ãC keeping the reaction temperature below-72¡ãC. On completion of addition the reaction mixture was left to stir at-78¡ãC for a further 20 minutes and then quenched with glacial acetic acid (20. 0ml). The resulting mixture was warmed to room temperature and the volatiles removed by evaporation. The residue was dissolved in 3N hydrochloric acid (116ml) and extracted with DCM. The extracts were combined, washed with saturated aqueous sodium hydrogen carbonate solution and the solvent evaporated. The residue was purified by chromatography on silica gel eluting with DCM/diethylether (100: 0 then 80: 20 and then 0: 100) to give pyrazine-2-carboxaldehyde (15.67g, 100percent). This was immediately dissolved in chloroform (200ml) cooled to 0¡ãC and hydroxylamine mono-hydrochloride (11. 02g, 159. 5mmol) and triethylamine (24. 2ml, 117. 4mmol) were added. The reaction mixture was then stirred at ambient temperature for 0.5 hour, and the solvent removed by evaporation. The residue suspended in diethylether (500ml) and the insolubles removed by filtration. The filtrate was evaporated and the residue purified by chromatography eluting with DCM/diethylether (100: 0 then 80: 20 and then 0: 100) to give the title compound (5. 5g, 31percent) as a solid. NMR (DMSO-d6) : 8.15 (s, 1H), 8.62 (dd, 2H), 8. 99 (s, 1H).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 6164-79-0.

Reference:
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2005/40159; (2005); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem