Extended knowledge of 5521-58-4

The synthetic route of 5-Methylpyrazin-2-amine has been constantly updated, and we look forward to future research findings.

Synthetic Route of 5521-58-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 5521-58-4, name is 5-Methylpyrazin-2-amine belongs to pyrazines compound, it is a common compound, a new synthetic route is introduced below.

3-[(Phenylmethyl)oxy]-5-(tetrahydro-2H-pyran-4-yloxy)benzoic acid (3.14 g, 9.5 mmol), 2-amino-5 methylpyrazine (2.08 g, 19.0 mmol) and EtaATU (4.70 g, 12.35 mmol) were dissolved in DMF (12.5 niL) and DIPEA (3.31 mL, 19.0 mmol) added. The resultant mixture was stirred at RT for 20 hours. The mixture was quenched with water (150 mL) and extracted with ethyl acetate (2 x 75 mL), washed with brine, dried (MgSO4) and concentrated in vacuo. The residue was chromatographed on silica, eluting with 0-50% ethyl acetate in isohexane, to give the desired compound as a pale yellow gum (1.70 g). m/z 420 (M+Eta)+

The synthetic route of 5-Methylpyrazin-2-amine has been constantly updated, and we look forward to future research findings.

Reference:
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2007/7041; (2007); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about C5H7N3

According to the analysis of related databases, 5521-58-4, the application of this compound in the production field has become more and more popular.

Electric Literature of 5521-58-4, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 5521-58-4 as follows.

(a) A solution of bromine (0.11 ml) in chloroform (20 ml) was added dropwise over 20 minutes to a solution of 2-amino-5-methylpyrazine (0.218 g) in chloroform (30 ml) which was protected from light. The reaction mixture was stirred for 90 minutes after addition was complete and was then washed with water (50 ml). The organic phase was dried (MgSO4) and volatile material was removed by evaporation to give a yellow oil. The oil was purified by elution with dichloromethane through a silica gel Mega Bond Elut column to give 2-amino-3-bromo-5-methylpyrazine (0.286 g) as a white solid, m.p. 51-52 C.; mass spectrum (+ve CI): 188 (M+H)+.

According to the analysis of related databases, 5521-58-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Zeneca Limited; US5866568; (1999); A;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Share a compound : C5H7N3

The chemical industry reduces the impact on the environment during synthesis 5-Methylpyrazin-2-amine. I believe this compound will play a more active role in future production and life.

Synthetic Route of 5521-58-4, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 5521-58-4, name is 5-Methylpyrazin-2-amine, This compound has unique chemical properties. The synthetic route is as follows.

Step 3: 4-[3-(5-Methyl-pyrazin-2-yl)-ureido]-3-(pyridin-3-ylmethoxy)-benzoic acid methyl ester. To a stirred, cooled (about 0 C.) solution of 4-amino-3-(pyridin-3-ylmethoxy)-benzoic acid methyl ester (258 mg, 1.0 mmol) in toluene (3.0 mL) was added triethylamine (139 muL, 1.0 mmol) and triphosgene (98 mg, 0.33 mmol). After stirring for 30 minutes, 5-methyl-2-amino pyrazine (109 mg, 1.0 mmol) was added and the reaction was heated to 65 degrees C. The reaction was allowed to cool to room temperature, then diluted with ethyl acetate (50 mL) and water (50 mL). A precipitate formed which was filtered and dried under reduced pressure to yield the desired material as a white solid (47% yield). 1H-NMR (400 MHz, d6-DMSO) delta10.29 (s, 1H), 8.79 (s, 1H), 8.68 (d, 1H, 8.59 (br s, 1H), 8.48 (d, 1H), 7.70 (s, 1H), 7.62 (d, 1H), 7.51 (m, 1H), 5.32 (s, 2H), 3.88 (s, 3H), 2.32 (s, 3H).

The chemical industry reduces the impact on the environment during synthesis 5-Methylpyrazin-2-amine. I believe this compound will play a more active role in future production and life.

Reference:
Patent; Keegan, Kathleen S.; Kesicki, Edward A.; Gaudino, John Joseph; Cook, Adam Wade; Cowen, Scott Douglas; Burgess, Laurence Edward; US2003/69284; (2003); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 5521-58-4

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 5-Methylpyrazin-2-amine, and friends who are interested can also refer to it.

Synthetic Route of 5521-58-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 5521-58-4 name is 5-Methylpyrazin-2-amine, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Example 22; Synthesis of N-(5-methyl-pyrazin-2-yl l)-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene)piperidine-1-carboxamide; Step 1; Phenyl 5-methylpyrazin-2-ylcarbamate; 2-Amino-5-methyl-pyrazine (2.00 g, 21.25 mmol) was dissolved in THF (80 mL), cooled to 0 C., and treated with pyridine (1.77 g, 22.3 mmol) followed by the dropwise addition of phenylchloroformate (3.49 g, 22.3 mmol) in THF (30 mL). After stirring for 3 h, 100 mL of MeCN was added and the reaction mixture was reduced to a volume of 100 mL in vacuo. The title compound as white crystals was collected by filtration (2.5 g, 55%) and was used without further purification.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 5-Methylpyrazin-2-amine, and friends who are interested can also refer to it.

Reference:
Patent; FAY, Lorraine Kathleen; Johnson, Douglas S.; Kesten, Suzanne Ross; Lazerwith, Scott E.; Morris, Mark Anthony; Stiff, Cory Michael; Meyers, Marvin Jay; Wang, Lijuan Jane; US2008/261941; (2008); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Analyzing the synthesis route of 5-Methylpyrazin-2-amine

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 5-Methylpyrazin-2-amine, other downstream synthetic routes, hurry up and to see.

Adding a certain compound to certain chemical reactions, such as: 5521-58-4, name is 5-Methylpyrazin-2-amine, belongs to Pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 5521-58-4, name: 5-Methylpyrazin-2-amine

To 3-[(2S)-l-(dilluoromethoxy)propan-2-yl]oxy-5-[5-(dimethylcarbamoyl)pyrazin-2- yl]oxy-benzoic acid (74.2 g, 180 mmol) was added DMF (1.4 mL, 18 mmol). io Dichloromethane (810 mL) and oxalyl chloride (25.2 mL, 289 mmol) were charged and the reaction left to stir at ambient temperature for 2 hours. The solvent was evaporated under reduced pressure, azeotroped with toluene (2 x 600 mL) and the resulting oil dissolved in pyridine (392ml) and dichloromethane (500ml). A solution of 5-methylpyrazin-2-amine (CAS no. 5521-58-4) (29.7 g, 272 mmol) in is pyridine (549 mL) was charged dropwise to the stirred solution and the reaction stirred at ambient temperature for 20 hours. The solvent was evaporated under reduced pressure and the residue was taken up into ethyl acetate (1200 mL), washed with water (1200 mL), IM citric acid (2 x 780 mL), saturated aqueous sodium hydrogen carbonate (2 x 780 mL), saturated aqueous brine (780 mL) and the combined organic extracts were dried (MgSO4)20 and evaporated under reduced pressure the residue was purified by flash chromatography to afford the title compound (66 g).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 5-Methylpyrazin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2008/50117; (2008); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Brief introduction of 5-Methylpyrazin-2-amine

According to the analysis of related databases, 5521-58-4, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 5521-58-4 as follows. Recommanded Product: 5-Methylpyrazin-2-amine

Oxalyl chloride (1.9 mL, 22.2 mmol) and DMF (1 drop) were added to a solution of 3- [(phenylmethyl)oxy]-5-[(3^-tetrahydrofuran-3-yloxy]benzoic acid (5.8 g, 18.5 mmol) in DCM (100 mL) and the mixture stirred at RT for 16 hours. The mixture was evaporated in vacuo to a residue which was redissolved in DCM (25 mL) and added to a stirred mixture of 2-amino-5-methylpyrazine (2.22 g, 20.35 mmol) and pyridine (1.81 mL, 22.2 mmol) in DCM (100 mL) at 50C – 1O0C. The mixture was stirred at RT for 18 hours, the DCM evaporated in vacuo to give a residue which was partitioned between water (50 mL) and ethyl acetate (125 mL). The organic layer was washed with brine, dried (MgSO4) and evaporated to a residue which was chromatographed on silica, eluting with 60% ethyl acetate in isohexane, to give the desired material (5.1 g). 1H NMR delta (CDCl3): 2.1 – 2.2 (m, 2H), 2.5 (s, 3H), 3.8 – 3.95 (m, 4H), 4.9 (m, IH), 5.0 (s, 2H), 6.6 (s, IH), 6.95 (s, IH), 7.05 (s, IH), 7.35 (m, 5H), 8.05 (s, IH), 8.3 (s, IH), 9.5 (s, IH); m/z 406 (M+H)+.

According to the analysis of related databases, 5521-58-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/125972; (2006); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Share a compound : 5-Methylpyrazin-2-amine

The synthetic route of 5521-58-4 has been constantly updated, and we look forward to future research findings.

Related Products of 5521-58-4,Some common heterocyclic compound, 5521-58-4, name is 5-Methylpyrazin-2-amine, molecular formula is C5H7N3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

Methyl 4-((1-(tert-butoxycarbonyl)piperidin-4-yl)methylamino)-6-chloronicotinate (90 mg, 0.23 mmol), 5-methylpyrazin-2-amine (38 mg, 0.35 mmol, as described in ltoh et al., 2002), cesium carbonate (153 mg, 0.47 mmol), 4,5-bis(diphenyl phosphino)-9,9-dimethylxanthene (11 mg, 8 mol%), and tris(dibenzylidene acetone)dipalladium chloroform complex (10 mg, 4 mol%) were added to an oven-dried microwave reactor vial (2 mL) which was capped and flushed with nitrogen. Anhydrous toluene (1.35 mL) was added and nitrogen was bubbled through the stirred solution for 10 minutes. The mixture was heated at 130C for 30 minutes by microwave irradiation. The solution was cooled, diluted with dichloromethane-methanol and adsorbed onto a 2g lsolute SCX-II column. The resin was washed with methanol, then with 2M ammonia in methanol. The basic fractions were concentrated and the residue was purified by preparative TLC, eluting with 10% methanol – dichloromethane) to give methyl 6-(5- methylpyrazin-2-ylamino)-4-(1-Boc-piperidin-4-ylmethylamino)nicotinate (35 mg) as a light green powder.LCMS (3) Rt 3.62 min; m/z (ESI+) 457 (MH+).The material was dissolved in dichloromethane (1mL) at 0C and trifluoroacetic acid (8 drops) was added. The temperature was allowed to rise to ambient. After 2.5 hours the mixture was adsorbed onto a 2g lsolute SCX-II column. The resin was washed with methanol, then with 2M ammonia in methanol. The basic fractions were concentrated. Preparative TLC, eluting with 1 % concentrated ammonia – 10% methanol – 89% dichloromethane, gave methyl 6-(5-methylpyrazin-2-ylamino)-4-(piperidin-4- ylmethylamino)nicotinate (18 mg, 22% over 2 steps) as a yellow powder.1H NMR (500 MHz, DMSO) delta 1.17-1.24 (2H, m), 1.66 (2H, d, J = 12 Hz), 1.68-1.79 (1 H, m), 2.40 (3H, s), 2.48 (2H, t, J = 12 Hz), 2.98 (2H, d, J = 12 Hz), 3.09 (2H, t, J = 6 Hz), 3.22 (1H, t, J = 6 Hz), 3.80 (3H, s), 7.11 (1H, s), 8.00 (1H, t, J = 5.5 Hz), 8.14 (1H, s), 8.54 (1H, s), 8.84 (1H, s), 9.90 (1H, br s). LCMS (3) Rt 1.65 min; m/z (ESI+) 357 (MH+).

The synthetic route of 5521-58-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; CANCER RESEARCH TECHNOLOGY LIMITED; WO2009/44162; (2009); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The important role of 5521-58-4

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 5-Methylpyrazin-2-amine, other downstream synthetic routes, hurry up and to see.

Adding a certain compound to certain chemical reactions, such as: 5521-58-4, name is 5-Methylpyrazin-2-amine, belongs to Pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 5521-58-4, Quality Control of 5-Methylpyrazin-2-amine

3-{[5-(Azetidin-1-ylcarbonyl)pyrazin-2-yl]oxy}-5-[(1S)-2-methoxy-1-methylethoxy]-benzoic acid (1.0 eq), (1.00 mol eq), 5-methylpyrazin-2-amine (1.12 mol eq) and 2-methyltetrahydrofuran (2.00 rel vols) were charged to a vessel and stirred at 20 C. N-methylmorpholine (5.00 mol eq) was added followed by a line-wash with 2-methyl-tetrahydrofuran (0.50 rel vols). A 50 wt % solution of 1-propanephosphonic acid cyclic anhydride (T3P) in 2-methyltetrahydrofuran (1.70 mol eq) was charged followed by a line wash with 2-methyltetrahydrofuran (0.50 rel vols). The resulting mixture was heated to 78 C. over 30 minutes and the clear yellow solution was held at 78 C. for roughly 22 hours, then checked for acceptable conversion. At the end of reaction the solution was further diluted with 2-methyltetrahydrofuran (7.00 rel vols) and the temperature was adjusted to 45 C. 5 wt % aq. sodium bicarbonate solution (6.00 rel vols) was slowly added over 30 mins to the stirring solution causing gas evolution. After 15 minutes stirring was turned off and the phases were allowed to separate over 30 minutes. The lower aqueous phase was drained off 20 wt % aq. phosphoric acid (3.30 rel vols) was charged to the stirring organic phase. After 15 minutes stirring the phases were allowed to separate and the lower aqueous phase was drained off again. A mixture of 20 wt % aq. phosphoric acid (1.50 rel vols) and water (1.50 rel vols) was charged to the stirring organic phase. After 15 minutes, stirring was turned off and the mixture held overnight for phase separation. The lower (aqueous) phase was drained off again. 5 Wt % aq. sodium bicarbonate (4.50 rel vols) was added over at least 10 mins to the stirring solution. After phase separation the lower (aqueous) phase was run off again. The resulting solution was dried by azeotropic distillation to a concentration of approximately 241 mg/g, collecting around 0.48 rel vols of the lower distillate phase. Heptane (1.60 rel vols) was added over 10 mins to the dry solution at above 50 C. before the batch was cooled to 40 C. The solution was seeded with 3-{[5-(azetidin-1-ylcarbonyl)pyrazin-2-yl]oxy}-5-[(1S)-2-methoxy-1-methylethoxy]-N-(5-methylpyrazin-2-yl)benzamide (Form 1 Seed, 0.0010 rel wt) before an overnight temperature program was applied: held at 40 C. for 2 hrs; cooled to 35 C. at 0.1 C./min (50 minutes); held for 2 hours; cooled to 30 C. at 0.1 C./min (50 minutes); held for 2 hours; cooled to 0 C. at 0.1 C./min (300 minutes); and held for at least 2 hours. After crystallisation overnight, further heptane (4.1 rel vols) was added over 2.0 hours to reduce losses to liquors to <4.0 mg/mL. The suspension was then filtered followed by a line rinse with a pre-mixed solution of heptane (2.10 rel vols) and 2-methyltetrahydrofuran (0.90 rel vols) and transferred to a filtration apparatus. The filter cake was dried to constant weight at 40 C. to furnish crude 3-{[5-(azetidin-1-ylcarbonyl)pyrazin-2-yl]oxy}-5-[(1S)-2-methoxy-1-methylethoxy]-N-(5-methylpyrazin-2-yl)benzamide in 86-89% as Form I. In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 5-Methylpyrazin-2-amine, other downstream synthetic routes, hurry up and to see. Reference:
Patent; AstraZeneca AB; US2010/210841; (2010); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extended knowledge of 5521-58-4

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 5-Methylpyrazin-2-amine, other downstream synthetic routes, hurry up and to see.

Related Products of 5521-58-4, The chemical industry reduces the impact on the environment during synthesis 5521-58-4, name is 5-Methylpyrazin-2-amine, I believe this compound will play a more active role in future production and life.

To a solution of 5-methylpyrazin-2-amine (5.00g, 45.8 mmol) and pyridine (4.35g,55.0 mmol) in DCM (250 mL) was added bromine (8.80 g, 55.0 mmol). The mixture was stirredat rt overnight. To the reaction mixture was added water (150 mL), and the resulting mixture waspartitioned. The organic layer was washed with saturated brine (100 mL), dried over anhydroussodium sulfate and filtered. The filtrate was concentrated in vacuo to give the title compound asa yellow solid (7.64 g, 88 %).MS (ESI, pos. ion) m/z: 190.2 [M+Ht;1H NMR (400 MHz, CDCh) 8 (ppm): 7.83 (s, lH), 4.93 (s, 2H), 2.41 (s, 3H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 5-Methylpyrazin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; SUNSHINE LAKE PHARMA CO., LTD.; TANG, Changhua; REN, Qingyun; YIN, Junjun; YI, Kai; LEI, Yibo; WANG, Yejun; ZHANG, Yingjun; (303 pag.)WO2018/108125; (2018); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New downstream synthetic route of 5521-58-4

The synthetic route of 5521-58-4 has been constantly updated, and we look forward to future research findings.

Related Products of 5521-58-4, These common heterocyclic compound, 5521-58-4, name is 5-Methylpyrazin-2-amine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

l-Chloro-N,N-2-trimethylpropenylamine (0.08 mL, 0.60 mmol) was added to a solution of 3 – { [5-(azetidin- 1 -ylcarbonyl)-3 -chloropyridin-2-yl] oxy } -5 – { [2-fluoro- 1 – (fluoromethyl)ethyl]oxy}benzoic acid (215 mg, 0.5 mmol) in DCM (5 mL) and the reaction stirred at RT for 30 – 40 minutes. Pyridine (0.08 mL, 1.0 mmol) and 2-amino-5- methylpyrazine (108 mg, 1.0 mmol) were added and the reaction stirred for 16 hours before being concentrated in vacuo and water (20 mL) added. The mixture was extracted with ethyl acetate (3 x 20 mL), washed with IN hydrochloric acid (20 mL), a saturated solution of sodium hydrogen carbonate (20 mL), brine (20 mL), dried (MgSO4) and concentrated in vacuo. The crude product was chromatographed on silica, eluting with a gradient of 0-10% methanol in DCM, to give the desired compound as a white solid (150 mg). 1H NuMR delta (CDCl3): 2.40 (quintet, 2H), 2.56 (s, 3H), 4.22-4.31 (m, 2H), 4.32-4.40 (m, 2H), 4.62 – 4.82 (m, 5H), 7.06 (t, IH), 7.38 (t, IH), 7.47 (t, IH), 8.15 (s, IH), 8.17 (s, IH), 8.25 (d, IH), 8.46 (s, IH), 9.55 (s, IH); m/z 518 (M+H)+, 516 (M-H)”

The synthetic route of 5521-58-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2007/7041; (2007); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem