Some scientific research about 4774-14-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 4774-14-5.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 4774-14-5, name is 2,6-Dichloropyrazine, This compound has unique chemical properties. The synthetic route is as follows., SDS of cas: 4774-14-5

To a solution of 2,6-dichloropyrazine (2.0 equiv.) in 3:1 DME: 2M aqueous sodium carbonate (0.125 M) was added phenylboronic acid (1.0 equiv.) then PdCl2(dppf).DCM adduct (0.1 equiv.). The reaction was heated in the microwave at 120 C. for 15 minutes. The crude reaction mixture was diluted with ethyl acetate and washed with sat. aq. sodium bicarbonate then sat. NaCl. The organic phase was dried with magnesium sulfate, filtered, and concentrated. The crude material was purified by silica gel column chromatography with heptanes to 30% ethyl acetate in heptanes to give 2-chloro-6-phenylpyrazine in 75% yield. LC/MS (m/z): 191.0 (MH+), Rt=1.00 min.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 4774-14-5.

Reference:
Patent; Burger, Matthew; Ding, Yu; Han, Wooseok; Nishiguchi, Gisele; Rico, Alice; Simmons, Robert Lowell; Smith, Aaron R.; Tamez, JR., Victoriano; Tanner, Huw; Wan, Lifeng; US2012/225061; (2012); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Some scientific research about 4774-14-5

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2,6-Dichloropyrazine, its application will become more common.

Reference of 4774-14-5,Some common heterocyclic compound, 4774-14-5, name is 2,6-Dichloropyrazine, molecular formula is C4H2Cl2N2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

Example 4; 6-Chloro-N-phenylpyrazin-2-amine A solution of 2,6-dichloropyrazine (1 g, 6. 7 mrnol) and anitine (1. 25 g, 13.4 mmol) in ethoxyethanol (20 mE) containing DIPEA (2.5 mL, 13. 4 minor) was heated at reflux for 3 days under Na. The solution was concentrated under reduced pressure and the residue dissolved in EtOAc (50 mL) and washed successively with H20 (50 mL), 1M HC1 (2 x 50 mL), H20 (50 mL) and brine (50 mL). After drying (Na2SO4) the solvent was removed under reduced pressure and the residue chromatographed cluting with EtOAc-hexane (20:80-50:50) to separate pure product from the lower fractions (230 mg, 17%).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2,6-Dichloropyrazine, its application will become more common.

Reference:
Patent; CYTOPIA RESEARCH PTY LTD; WO2005/66156; (2005); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Some tips on 4774-14-5

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Electric Literature of 4774-14-5, A common heterocyclic compound, 4774-14-5, name is 2,6-Dichloropyrazine, molecular formula is C4H2Cl2N2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

Synthesis o -chloro-6-phenylpyrazine[00145] To a solution of 2,6-dichloropyrazine (2.0 equiv.) in 3 : 1 DME:2M aqueous sodium carbonate (0.125 M) was added phenylboronic acid (1.0 equiv.) then PdCl2(dppf) ¡¤ DCM adduct (0.1 equiv.). The reaction was heated in the microwave at 120 C for 15 minutes. The crude reaction mixture was diluted with ethyl acetate and washed with sat. aq. sodium bicarbonate then sat. NaCl. The organic phase was dried with magnesium sulfate, filtered, and concentrated. The crude material was purified by silica gel column chromatography with heptanes to 30% ethyl acetate in heptanes to give 2- chloro-6-phenylpyrazine in 75% yield. LC/MS (m/z): 191.0 (MH+), R, = 1.00 min.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; NOVARTIS AG; BURGER, Matthew; DING, Yu; HAN, Wooseok; LINDVALL, Mika; NISHIGUCHI, Gisele A.; RICO, Alice; SMITH, Aaron; TANNER, Huw; WAN, Lifeng; WO2012/4217; (2012); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Analyzing the synthesis route of 4774-14-5

The synthetic route of 4774-14-5 has been constantly updated, and we look forward to future research findings.

Synthetic Route of 4774-14-5, A common heterocyclic compound, 4774-14-5, name is 2,6-Dichloropyrazine, molecular formula is C4H2Cl2N2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

2,6-Dichloropyrazine (360 mg, 2.4 mmol), phenylboronic acid (295 mg, 2.4 mmol), tetrakis(triphenylphosphine)palladium(0) (290 mg, 0.25 mmol), potassium carbonate (333 mg, 2.4 mmol), ethanol (1 mL), and toluene (5 mL) were combined and the mixture degassed with nitrogen for 2 minutes before heating to 80C for one hour. The reaction was partitioned between ethyl acetate and water. The aqueous layer was washed with ethyl acetate (3x), the organics were combined, dried over magnesium sulfate, filtered, and concentrated. The crude material was purified by silica gel chromatography (0-30% ethyl acetate in hexanes) to give the title compound as a solid (108 mg, 0.56 mmol, 23% yield); MS (ESI) MS (ESI) m/z 191.2 [M+l]+.

The synthetic route of 4774-14-5 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; SIGNAL PHARMACEUTICALS, LLC; WO2009/89042; (2009); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 4774-14-5

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Adding a certain compound to certain chemical reactions, such as: 4774-14-5, name is 2,6-Dichloropyrazine, belongs to Pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4774-14-5, name: 2,6-Dichloropyrazine

A solution of compound 8 (450.0 g, 3.02 mol) in cone. aq. NH3 (3.0 L) was stirred at 135¡ãC overnight in a 10 L sealed pressure vessel. TLC and LC/MS showed complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered to afford a white solid. The solid was washed with water (200 mL x 3), and then dried to afford compound 9 (312 g, 80percent yield) as a solid. 1HNMR (400 MHz, DMSO- 6): delta 7.82 (s, 1 H), 7.12 (s, 1 H), 6.93 (s, 2H). MS Calcd.: 129 MS Found: 130 ([M+H]+).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Patent; IMARA, INC.; H. LUNDBECK A/S; SVENSTRUP, Niels; PARACHIKOVA, Anna I.; MCARTHUR, James; (133 pag.)WO2018/9424; (2018); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Introduction of a new synthetic route about 4774-14-5

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 2,6-Dichloropyrazine, other downstream synthetic routes, hurry up and to see.

Adding a certain compound to certain chemical reactions, such as: 4774-14-5, name is 2,6-Dichloropyrazine, belongs to Pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4774-14-5, name: 2,6-Dichloropyrazine

Step 1 [0666] To a solution of fert-butyl azetidin-3-ylcarbamate hydrochloride (LXIII) (2 g, 9.58 mmol) in dry DMF (19.2 mL) was added DIPEA (8.37 ml, 47.9 mmol). To this mixture was added 2,6-dichloropyrazine (LXIV) (1.428 g, 9.58 mmol) and the reaction was stirred at 95C for 3 h. The reaction was quenched with water (20 mL) and extracted with EtOAc. The organic layer was dried over anhydrous NaaSO/t, filtered and concentrated. The residue was purified by silica gel column chromatography (40 g) (100% hexanes?hexanes:EtOAc 1 : 1) to yield fert-butyl (l-(6-chloropyrazin-2-yl)azetidin-3-yl)carbamate (LXV) (2.2882 g, 8.04 mmol, 84 % yield) as a white solid. ESIMS found for C12H17CIN4O2 mlz 285.1 (M+H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 2,6-Dichloropyrazine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; SAMUMED, LLC.; KC, Sunil Kumar; WALLACE, David Mark; CAO, Jianguo; CHIRUTA, Chandramouli; HOOD, John; (254 pag.)WO2017/23980; (2017); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 4774-14-5

The synthetic route of 2,6-Dichloropyrazine has been constantly updated, and we look forward to future research findings.

Application of 4774-14-5, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 4774-14-5, name is 2,6-Dichloropyrazine belongs to Pyrazines compound, it is a common compound, a new synthetic route is introduced below.

To a mixture of 2,6-dichloropyrazine (12.5 g, 83.91 mmol), 4-methylbenzenesulfonic acid hydrate (32 g, 168.2 mmol), NaI (120 g, 800.6 mmol) and 1,4,7,10,13- pentaoxacyclopentadecane (10 mL, 50.35 mmol) was added thiolane 1 ,1 -dioxide (200 mL) and the mixture heated to 150 0C and stirred for 3 hrs. The mixture was allowed to cool and added water 150 ml and neutralized with solid NaHCtheta3 It was then extracted into ether (3x300ml), washed with Sat. NaHCO3, brine then dried (MgSO4) and concentrated to give an orange solid. The product was washed with water and dried under high vacuum to give 2,6-diiodopyrazine as an orange solid (8.6 g, 31%). ES+ 332. IHNMR (CDCl3) 8.73 (2H, s).

The synthetic route of 2,6-Dichloropyrazine has been constantly updated, and we look forward to future research findings.

Reference:
Patent; VERTEX PHARMACEUTICALS INCORPORATED; JIMENEZ, Juan-Miguel; STUDLEY, John; WO2010/11772; (2010); A2;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extended knowledge of 4774-14-5

Statistics shows that 2,6-Dichloropyrazine is playing an increasingly important role. we look forward to future research findings about 4774-14-5.

Related Products of 4774-14-5, These common heterocyclic compound, 4774-14-5, name is 2,6-Dichloropyrazine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: [Li(TMP)Zn(tBu)2] 1 was made according to the literature procedure2 on a 0.4 mmol scale in THF solution. To this solution 2-methoxypyridine (0.042 mL, 0.4 mmol) was added and the resultant light orange reaction allowed to stir at room temperature for 2 hours. Next the solution was cooled to 0C and quenched with I2 (508 mg, in 1 mL THF) and allowed to stir for 1 hour. Next a 10% solution of Na2S2O3 was added until bleaching and the product extracted with DCM (3 x 1 mL). The combined organic extracts were dried over MgSO4 and the solvent removed under reduced pressure. The residue was purified by SiO2 chromatography using Heptane:DCM as eluent (20:80–>40:60) to give 3-iodo2-methoxypyridine 2a as a colourless oil (87.1 mg, 92% yield).

Statistics shows that 2,6-Dichloropyrazine is playing an increasingly important role. we look forward to future research findings about 4774-14-5.

Reference:
Article; Blair, Victoria L.; Blakemore, David C.; Hay, Duncan; Hevia, Eva; Pryde, David C.; Tetrahedron Letters; vol. 52; 36; (2011); p. 4590 – 4594;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Continuously updated synthesis method about 4774-14-5

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 2,6-Dichloropyrazine, and friends who are interested can also refer to it.

Synthetic Route of 4774-14-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 4774-14-5 name is 2,6-Dichloropyrazine, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Step 1 To a solution of tert-butyl azetidin-3-ylcarbamate hydrochloride (XLVI) (2 g, 9.58 mmol) in dry DMF (19.2 mL) was added DIPEA (8.37 ml, 47.9 mmol). To this mixture was added 2,6-dichloropyrazine (XLVII) (1.428 g, 9.58 mmol) and the reaction was stirred at 95 C. for 3 hours. The reaction was quenched with water (20 mL) and extracted with EtOAc. The organic layer was dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by silica gel column chromatography (40 g) (100% hexanes?hexanes:EtOAc 1:1) to yield tert-butyl(1-(6-chloropyrazin-2-yl)azetidin-3-yl)carbamate (XLVIII) (2.2882 g, 8.04 mmol, 84% yield) as a white solid. ESIMS found for C12H17ClN4O2 m/z 285.1 (M+H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 2,6-Dichloropyrazine, and friends who are interested can also refer to it.

Reference:
Patent; Samumed, LLC; Hood, John; Kumar KC, Sunil; Wallace, David Mark; Mittapalli, Gopi Kumar; Hofilena, Brian Joseph; Mak, Chi Ching; Bollu, Venkataiah; Eastman, Brian; US2015/266825; (2015); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Application of 4774-14-5

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Adding a certain compound to certain chemical reactions, such as: 4774-14-5, name is 2,6-Dichloropyrazine, belongs to Pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4774-14-5, name: 2,6-Dichloropyrazine

General procedure: To a solution of absolute ethanol (5 mL) and dichlorodiazine (3.36 mmol) in a 50mL round-bottom flaskwas added triethylamine (5.03 mmol), followed by the amine (5.03 mmol). The mixture was stirred either under reflux of ethanol (for dichloropyridazine and for dichloropyrazine) or at room temperature (for dichloropyrimidines). The reaction was monitored by GC. Once the starting dichlorodiazinewas completely consumed, the mixture was poured into a saturated NH4Cl solution (20 mL), then extracted with CH2Cl2 (320 mL). The combined organic layers were dried over Na2SO4, filtered, and evaporated under vacuum. The crude solid was triturated in petroleum ether, filtered through a Buchner to afford the pure product.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Article; Sengmany, Stephane; Lebre, Julie; Le Gall, Ewan; Leonel, Eric; Tetrahedron; vol. 71; 29; (2015); p. 4859 – 4867;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem