Discovery of 23229-26-7

According to the analysis of related databases, 23229-26-7, the application of this compound in the production field has become more and more popular.

Electric Literature of 23229-26-7, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 23229-26-7 as follows.

Step 3: Synthesis of 2-bromo-5-(methylthio)pyrazine To a stirred solution of 2,5-dibromopyrazine (0.45 g, 1.892 mmol) in anhydrous THF (5 mL) was added 21% aq. solution of sodium thiomethoxide (0.94 mL g, 2.83 mmol) at 0 C. and stirred for 1 h at RT. Progress of reaction was monitored by TLC. After reaction completion DCM was added and washed with water. The organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield 2-bromo-5-(methylthio)pyrazine (0.3 g, 78%) as brown oil. MS: 206.08 [M++1]

According to the analysis of related databases, 23229-26-7, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Mankind Pharma Ltd.; Patil, Rakesh Ishwar; Verma, Jeevan; Shah, Dharmesh; Ali, Sazid; Bapuram, Srinivasa Reddy; Rai, Santosh Kumar; Kumar, Anil; (146 pag.)US2017/291910; (2017); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Continuously updated synthesis method about 2,5-Dibromopyrazine

The synthetic route of 23229-26-7 has been constantly updated, and we look forward to future research findings.

Electric Literature of 23229-26-7, These common heterocyclic compound, 23229-26-7, name is 2,5-Dibromopyrazine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a flask, an appropriate pyrazine, pyrimidine or thiazole (1.0 equivalent) and a nucleophile (Nu), such as amine, alcohol or thio-derivatives in one equivalence or an exess amount were combined in a solvent such as THF, DMF or alcohol, with or without an addition of NaH. The reaction was either stirred at room temperature or under heating for one to three days. After all the solvents were removed, the residue was partitioned between saturated NaHCO3 and EtOAc. The aqueous layer was extracted with ethyl acetate and the combined extracts were concentrated in vacuo to give a residue, which was purified by silica gel chromatography to afford the desired product.

The synthetic route of 23229-26-7 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Wang, Tao; Zhang, Zhongxing; Meanwell, Nicholas A.; Kadow, John F.; Yin, Zhiwei; Xue, Qiufen May; Regueiro-Ren, Alicia; Matiskella, John D.; Ueda, Yasutsugu; US2004/110785; (2004); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Analyzing the synthesis route of 23229-26-7

According to the analysis of related databases, 23229-26-7, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 23229-26-7 as follows. Computed Properties of C4H2Br2N2

(107d) 2-Bromo-5-(methylsulfonyl)pyrazine 2,5-Dibromopyrazine (270 mg, 1.14 mmol) was dissolved in tetrahydrofuran (10 mL), and sodium thiomethoxide (320 mg, 4.57 mmol) was added at room temperature, followed by stirring at room temperature for 2.5 hours under nitrogen atmosphere. To this reaction solution, water (10 mL) was added, and extraction was carried out with diethyl ether (10 mL). The organic layer was washed with saturated brine, and subsequently dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified using silica gel column chromatography (elution solvent: ethyl acetate/hexane=5%-10%) to afford a yellow solid. This was dissolved in methylene chloride (10 mL), and m-chloroperbenzoic acid (approximately 65%, 580 mg, approximately 2.2 mmol) was added at room temperature, followed by stirring at room temperature for 1 hour under nitrogen atmosphere. To this reaction solution, a saturated aqueous sodium hydrogencarbonate solution (10 mL) was added, and extraction was carried out with methylene chloride (10 mL). The organic layer was washed with saturated brine, and subsequently dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified using silica gel column chromatography (elution solvent: ethyl acetate/hexane=15%-25%) to afford the desired compound (190 mg, yield 70%) as a white solid. 1H-NMR (CDCl3, 400 MHz): delta 3.26 (3H, s), 8.80 (1H, d, J=1.2 Hz), 9.06 (1H, d, J=1.2 Hz).

According to the analysis of related databases, 23229-26-7, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Daiichi Sankyo Company, Limited; EP2239253; (2010); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem