A new application about 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 2150-55-2, is researched, SMILESS is O=C(C1N=C(N)SC1)O, Molecular C4H6N2O2SJournal, Shipin Kexue (Beijing, China) called Effect of dissolved oxygen on production of L-cysteine synthetase by Pseudomonas sp. TS1138, Author is Huai, Lihua; Chen, Ning, the main research direction is dissolved oxygen cysteine synthetase Pseudomonas fermentation.Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid.

Pseudomonas sp. TS1138 has potential to produce L-cysteine synthetase through asym. hydrolysis of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC). The effect of dissolved oxygen level on the production of L-cysteine synthetase was investigated in shake flasks or 7 L bioreactor. The results indicated that the cell growth and the production of L-cysteine synthetase were inhibited at low dissolved oxygen level. Although cell growth was improved at the high dissolved oxygen level, the inhibition against production of L-cysteine synthetase was still observed in shake flasks. In 7 L bioreactor, dissolved oxygen concentration controlled at more than 30% was helpful for improving the cell growth and the production of L-cysteine synthetase through regulating agitation rate and air flow rate during the middle and late stage.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Research on new synthetic routes about 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Category: pyrazines, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Sano, Konosuke; Yokozeki, Kenzo; Tamura, Fumihide; Yasuda, Naohiko; Noda, Ichiro; Mitsugi, Koji researched the compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid( cas:2150-55-2 ).Category: pyrazines.They published the article 《Microbial conversion of DL-2-amino-Δ-thiazoline-4-carboxylic acid to L-cysteine and L-cystine: screening of microorganisms and identification of products》 about this compound( cas:2150-55-2 ) in Applied and Environmental Microbiology. Keywords: cysteine aminothiazolinecarboxylate bacteria; Pseudomonas aminothiazolinecarboxylate hydrolysis; stereochem hydrolysis cysteine production Pseudomonas. We’ll tell you more about this compound (cas:2150-55-2).

Microorganisms able to form L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC), an intermediate in the chem. synthesis of DL-cysteine, were isolated from soil samples and classified as Pseudomonas AJ3854, Pseudomonas cohaerens, P. desmolytica, and P. ovalis. Thirteen L-cysteine-producing bacteria were also found among 463 stock cultures representing 37 genera. Intact cells of Pseudomonas AJ 3854 produced 6.1 mg of L-cysteine and(or) L-cystine per mL from 10 mg of DL-ATC.3H2O per mL, a molar yield of 100%. This suggests that racemization and asym. hydrolysis occurred simultaneously in this incubation mixture After complete oxidation of cysteine, crystalline cystine was isolated; its configuration was L, based on data from x-ray diffraction, microbioassay, and optical rotation.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Category: pyrazines, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Chemical Properties and Facts of 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Product Details of 2150-55-2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Continuous L-cysteine production using immobilized cell reactors and product extractors. Author is Ryu, Ok Hee; Ju, Jae Yeong; Shin, Chul Soo.

Methods to improve the stability of L-cysteine-producing enzymes from Pseudomonas sp. M-38, both as whole cells and as immobilized cells, were investigated for the production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC). Among the 3 L-cysteine-producing enzymes, only L-ATC hydrolase was unstable. However, the stability of L-ATC hydrolase was significantly enhanced by the addition of 20% sorbitol. In continuous L-cysteine production, >60% of the initial activity of L-ATC hydrolase remained after 1000 h at 37° with 40% sorbitol and at 30° with 20% sorbitol. A system involving a cascade of processes using 2 packed-bed reactors with immobilized cells and 2 L-cysteine extractors with the ion-exchange resin Dowex 50W was developed to reduce product inhibition and unreacted substrate. The overall productivity of the system was 43% higher than for 2 reactors without an ion-exchange extractor.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extracurricular laboratory: Synthetic route of 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Category: pyrazines, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 2150-55-2, is researched, SMILESS is O=C(C1N=C(N)SC1)O, Molecular C4H6N2O2SJournal, Food Technology and Biotechnology called Medium optimization for enzymatic production of L-cysteine by Pseudomonas sp. Zjwp-14 using response surface methodology, Author is Lv, Guo-Ying; Wang, Pu; He, Jun-Yao; Li, Xiao-Nian, the main research direction is Pseudomonas cysteine fermentation optimization.Category: pyrazines.

Response surface methodol. was applied to optimize medium constituents for enzymic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) by a novel Pseudomonas sp. Zjwp-14. With the Plackett-Burman design experiment, glycerol, DL-ATC, yeast extract, and pH were found to be the most powerful factors among the eight tested variables that influence intracellular enzyme activity for biotransformation of DL-ATC to L-cysteine. In order to investigate the quant. effects for four variables selected from Plackett-Burman design on enzyme activity, a central composite design was subsequently employed for further optimization. The determination coefficient (R2) was 0.9817, and the results show that the regression models adequately explain the data variation and represent the actual relationships between the parameters and responses. The optimal medium for Pseudomonas sp. Zjwp-14 was composed of (in g/L): glycerol 16.94, DL-ATC 4.59, yeast extract 6.99, NaCl 5.0, peptone 5.0, beef extract 5.0, MgSO4·7H2O 0.4, and pH=7.94. Under the optimal conditions, the maximum intracellular enzyme activity of 918.7 U/mL in theory and 903.6 U/mL in the experiment were obtained, with an increase of 15.6 % compared to the original medium components. In a 5-L fermentor, cultivation time for Pseudomonas sp. Zjwp-14 was cut down for 6 h and the maximum enzyme activity reached 929.6 U/mL.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Category: pyrazines, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Application of 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Ryu, Ok Hee; Oh, Sea Wha; Yoo, Seung Ku; Shin, Chul Soo researched the compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid( cas:2150-55-2 ).Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid.They published the article 《The stability of L-ATC hydrolase participating in L-cysteine production》 about this compound( cas:2150-55-2 ) in Biotechnology Letters. Keywords: aminothiazolinecarboxylate hydrolase stabilization cysteine manufacture. We’ll tell you more about this compound (cas:2150-55-2).

In the production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC), the stability of the relevant enzymes produced by Pseudomonas sp. was tested, and strategies to improve the stability of L-ATC hydrolase were investigated with respect to water activity and ionic strength. Among the 3 enzymes which participate in L-cysteine production, i.e., ATC racemase, L-ATC hydrolase, and S-carbamyl-L-cysteine hydrolase, L-ATC hydrolase is the least stable. Various mixtures of salts and sorbitol were added to adjust the water activities of the tested solutions As the water activity decreased from 0.93 to 0.80, the stability of L-ATC hydrolase was sharply enhanced. In the absence of sorbitol, the stability of L-ATC hydrolase increased in proportion to ionic strength. Even though enzyme stability was not good at a low ionic strength, it was enhanced by lowering the water activity with the addition of sorbitol. The half-life of L-ATC hydrolase in sorbitol-salt mixtures increased by 10- to 20-fold compared to that of a control.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Top Picks: new discover of 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid by Pseudomonas thiazolinophilum: optimal conditions for the enzyme formation and enzymatic reaction, published in 1978-12-31, which mentions a compound: 2150-55-2, Name is 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, Molecular C4H6N2O2S, Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid.

Cultivation of P. thiazolinophilum AJ 3854 for the production of the enzyme which could form L-cysteine [52-90-4] from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (I) [2150-55-2] and the reaction conditions of this enzyme were investigated. This enzyme was inducible, intracellular, and growth-associated A marked inactivation of enzyme was observed, especially in the growing phase, but could be prevented by 1∼10 mM Mn2+ or by I as inducer at the mid-logarithmic phase. Enzymic degradation of L-cysteine (or L-cystine [56-89-3]) formed from I could be prevented by the addition of hydroxylamine or semicarbazide. Thus, L-cysteine and L-cystine were quant. produced from I. Optimal pH and temperature of enzymic reaction were 8.2 and 42° (2 h), resp. A sigmoidal reaction curve was observed when intact cells were used as enzyme source, but sonic treatment of cells made the curve linear.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Decrypt The Mystery Of 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Formula: C4H6N2O2S, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Effect of DL-ATC on the production of L-cysteine with enzymatic method by Pseudomonas sp. TS1138, published in 2008-06-25, which mentions a compound: 2150-55-2, Name is 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, Molecular C4H6N2O2S, Formula: C4H6N2O2S.

L-cysteine is an elementary S-containing amino acid, which has been widely used in medicines, food additives, and cosmetics. Effect of DL-ATC on the conditions of enzyme production process by Pseudomonas sp. TS1138 and enzymic transformation of L-cysteine was discussed. The results show that DL-ATC add in the medium has an inducible impact on enzyme production On account of the interaction of the L-cysteine yield and conversion ratio of DL-ATC, the optimal concentration of DL-ATC is confirmed at about 9 g/L-1. The L-cysteine yield is increased by 56.25% with the DL-ATC interval feeding method.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Formula: C4H6N2O2S, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The Absolute Best Science Experiment for 2150-55-2

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Formula: C4H6N2O2S, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optimization of fermentation conditions of microbial enzymatic synthesis of L-cysteine》. Authors are Kou, Guang-hui; Huai, Li-hua; Bai, Gang; Yang, Wen-bo.The article about the compound:2-Amino-4,5-dihydrothiazole-4-carboxylic acidcas:2150-55-2,SMILESS:O=C(C1N=C(N)SC1)O).Formula: C4H6N2O2S. Through the article, more information about this compound (cas:2150-55-2) is conveyed.

Pseudomonas sp. TS1138 was used as the test strain to produce L-cysteine, and microbial enzymic synthesis of L-cysteine was studied. In the medium optimization, it was found that glucose and urea were the best carbon and nitrogen source for enzyme production, resp. Effect of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) on enzyme production was carried out, and the exptl. result showed that a initial concentration of 5 g/L DL-ATC was found to be optimal for enzyme production Effects of inoculum size, initial pH and liquid volume on enzyme production were investigated. The results indicated that the optimum inoculum size was 10%, and the optimum initial pH was 8.0. The optimum liquid volume was 40 mL culture medium in a 500 mL shaking flask.

Compounds in my other articles are similar to this one(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Formula: C4H6N2O2S, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extended knowledge of 2150-55-2

In some applications, this compound(2150-55-2)Related Products of 2150-55-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Seizures and selective CA-1 hippocampal lesions induced by an excitotoxic cyanide metabolite, 2-iminothiazolidine-4-carboxylic acid.Related Products of 2150-55-2.

Excitatory amino acid (EAA)-like and excitotoxic properties of the secondary metabolite of cyanide, 2-iminothiazolidine-4-carboxylic acid (2-ICA), were evaluated because of its possible role in cyanide-induced neurotoxicity. Intracerebroventricular (i.c.v.) injections of 2-ICA in mice produced wild-running seizures that were qual. and quant. similar to seizures observed with glutamate. 2-ICA, kainate, and proline seizures were prevented by both the NMDA and non-NMDA antagonists, MK-801 and CNQX, resp. In contrast, NMDA-induced seizures were prevented by MK-801, but not CNQX. When infused i.c.v. in rats over a 7-day period, 2-ICA produced extensive and selective loss of CA-1 pyramidal neurons of the hippocampus. In hippocampal slices preloaded with D-[3H]aspartate, 2-ICA superfusion did not evoke release nor significantly augment potassium-stimulated release of the radiolabeled transmitter. These findings indicate 2-ICA has excitotoxic properties and its role in cyanide neurotoxicity deserves further study.

In some applications, this compound(2150-55-2)Related Products of 2150-55-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Decrypt The Mystery Of 2150-55-2

In some applications, this compound(2150-55-2)Recommanded Product: 2150-55-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 2150-55-2, is researched, SMILESS is O=C(C1N=C(N)SC1)O, Molecular C4H6N2O2SJournal, Article, Bioscience, Biotechnology, and Biochemistry called Identification, cloning, and sequencing of the genes involved in the conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid to L-cysteine in Pseudomonas sp. strain ON-4a, Author is Ohmachi, Tetsuo; Nishino, Mizuka; Kawata, Maki; Edo, Namiko; Funaki, Hiroko; Narita, Megumi; Mori, Kazuyuki; Tamura, Yoshiharu; Asada, Yoshihiro, the main research direction is Pseudomonas aminothiazoline carboxylate hydrolase gene sequence; carbamoyl amino acid amidase gene sequence Pseudomonas.Recommanded Product: 2150-55-2.

The newly isolated strain Pseudomonas sp. ON-4a converts D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (D,L-ATC) to L-cysteine via N-carbamoyl-L-cysteine. A genomic DNA fragment from this strain containing the gene(s) encoding enzymes that convert D,L-ATC into L-cysteine was cloned in Escherichia coli. Transformants expressing cysteine-forming activity were selected by growth of an E. coli mutant defective in the cysB gene. A pos. clone, denoted CM1, carrying the plasmid pCM1 with an insert DNA of approx. 3.4 kb was obtained, and the nucleotide sequence of a complementing region was analyzed. Anal. of the sequence found two open reading frames, ORF1 and ORF2, which encoded proteins of 183 and 435 amino acid residues, resp. E. coli DH5α harboring pTrCM1, which was constructed by inserting the subcloned sequence into an expression vector, expressed two proteins of 25 kDa and 45 kDa. From the analyses of crude extracts of E. coli DH5α carrying deletion derivatives of pTrCM1 by sodium dodecyl sulfatepolyacrylamide gel electrophoresis and by enzymic activity, it was found that the 25-kDa protein encoded by ORF1 was the enzyme L-2-amino-Δ2-thiazoline-4-carboxylic acid hydrolase, which catalyzes the conversion of D,L-ATC to N-carbamoyl-L-cysteine, and that the 45-kDa protein encoded by ORF2 was the enzyme N-carbamoyl-L-cysteine amidohydrolase, which catalyzes the conversion of N-carbamoyl-L-cysteine to L-cysteine.

In some applications, this compound(2150-55-2)Recommanded Product: 2150-55-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem