An update on the compound challenge: 2150-55-2

Here is just a brief introduction to this compound(2150-55-2)HPLC of Formula: 2150-55-2, more information about the compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid) is in the article, you can click the link below.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 2150-55-2, is researched, Molecular C4H6N2O2S, about Isolation and genetic improvement of Pseudomonas sp. strain HUT-78, capable of enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid, the main research direction is cysteine production Pseudomonas fermentation mutagenesis genetic engineering; aminothiazolinecarboxylate hydrolase carbamoylcysteine amidohydrolase Pseudomonas.HPLC of Formula: 2150-55-2.

Microorganisms able to bioconvert DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) into L-cysteine were originally isolated from 10 soil samples with DL-ATC as the sole nitrogen source. Ninety-seven L-cysteine-producing bacterial strains were screened out and obtained in pure culture. Among them, a strain, designated as HUT-78, was selected as the best producer, with a molar bioconversion rate of 60%. Based on the 16S rRNA gene sequence anal., this isolate was placed within the genus Pseudomonas. A novel mutant of this strain with a significantly reduced activity of L-cysteine desulfhydrase, a L-cysteine-decomposing enzyme, was derived by UV-mutagenesis. This mutant, designated as mHUT-78, exhibited a 42% increase in L-cysteine producing activity. Moreover, the bioconversion reactions in both the parent and the mutant strain were significantly accelerated by co-overexpression of the two key enzymes, AtcB and AtcC, involved in the bioconversion reaction.

Here is just a brief introduction to this compound(2150-55-2)HPLC of Formula: 2150-55-2, more information about the compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Analyzing the synthesis route of 2150-55-2

Here is just a brief introduction to this compound(2150-55-2)Computed Properties of C4H6N2O2S, more information about the compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid) is in the article, you can click the link below.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Bioconversion of D,L-ATC to L-cysteine using whole cells.Computed Properties of C4H6N2O2S.

In the conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic acid (D,L-ATC) to L-cysteine using Pseudomonas species CU6, the effects of surfactants on whole cells and the stabilities of cell-free enzyme solution and continuous reactor packed with immobilized whole cells were investigated. The enzymic reaction was minimal by whole cells without the addition of surfactants, whereas it was well carried out with SDS or Triton X-100 and was comparable to the reaction using a cell-free enzyme solution The enzyme activity of the cell-free solution decreased 50% after 7 h of storage at 30°, but not under anaerobic conditions with sparging nitrogen gas. On the other hand, there were no effects of nitrogen gas in a continuous reactor using immobilized whole cells. Hydroxylamine, an inhibitor of L-cysteine desulfhydrase, lowered the enzyme stability.

Here is just a brief introduction to this compound(2150-55-2)Computed Properties of C4H6N2O2S, more information about the compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Never Underestimate the Influence Of 2150-55-2

Here is just a brief introduction to this compound(2150-55-2)Computed Properties of C4H6N2O2S, more information about the compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid) is in the article, you can click the link below.

Computed Properties of C4H6N2O2S. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about RECiQ: A Rapid and Easy Method for Determining Cyanide Intoxication by Cyanide and 2-Aminothiazoline-4-carboxylic Acid Quantification in the Human Blood Using Probe Electrospray Ionization Tandem Mass Spectrometry. Author is Hisatsune, Kazuaki; Murata, Tasuku; Ogata, Koretsugu; Hida, Minemasa; Ishii, Akira; Tsuchihashi, Hitoshi; Hayashi, Yumi; Zaitsu, Kei.

In this study, we developed a rapid and easy method to determine cyanide (CN) intoxication by quantification of CN and 2-aminothiazoline-4-carboxylic acid (ATCA), which is a new and reliable indicator of CN exposure, in the human blood using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS) named RECiQ. For CN, we applied the previously reported one-pot derivatization method using 2,3-naphthalene-dialdehyde and taurine, which can directly derivatize CN in the blood. The anal. conditions of the CN derivatization were optimized as a 10 min reaction time at room temperature In contrast, ATCA could be directly detected in the blood by PESI/MS/MS. We developed quant. methods for the derivatized CN and ATCA using an internal standard method and validated them using quality control samples, demonstrating that the linearities of each calibration curve were greater than 0.995, and intra- and interday precisions and accuracies were 5.1-15 and 1.1-14%, resp. Moreover, the lower limit of detections for CN and ATCA were 42 and 43 ng/mL, resp. Finally, we applied RECiQ to three postmortem blood specimens obtained from victims of fire incidents, which resulted in the successful quantification of CN and ATCA in all samples. As PESI/MS/MS can be completed within 0.5 min, and the sample volume requirement of RECiQ is only 2μL of blood, these methods are useful not only for the rapid determination of CN exposure but also for the estimation of the CN intoxication levels during an autopsy.

Here is just a brief introduction to this compound(2150-55-2)Computed Properties of C4H6N2O2S, more information about the compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extracurricular laboratory: Synthetic route of 2150-55-2

Compound(2150-55-2)Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Optimization of bioconversion conditions for manufacturing L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid with immobilized cells based on response surface analysis.Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid.

The conversion conditions for manufacturing L-cysteine using immobilized cells were optimized by using SAS software combined with the methods of Plackett-Burman design and response surface methodol. The cells were immobilized by calcium alginate embedding method. The optimum levels of three important factors were determined as follows: the volume of immobilized cell was 25.5 mL, the concentration of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) was 1.0 mass%, and the proliferation time of immobilized cells was 12.9 h. Experiments showed that the average enzyme activity could reach 934 U/mL at optimized conditions for five batches, with an increase of 38.9% compared with that before the optimization. After the immobilized cells were utilized for 4 times, the conversion rate could be still over 91.0% of the initial value.

Compound(2150-55-2)Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Top Picks: new discover of 2150-55-2

Compound(2150-55-2)COA of Formula: C4H6N2O2S received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 2150-55-2, is researched, Molecular C4H6N2O2S, about N-carbamoyl-L-cysteine as an intermediate in the bioconversion from D,L-2-amino-Δ2-thiazoline-4-carboxylic acid to L-cysteine by Pseudomonas sp. ON-4a, the main research direction is Pseudomonas carbamoylcysteine; 2-amino-Δ 2-thiazoline-4-carboxylic acid (ATC); L-cysteine; N-carbamoyl-L-cysteine (L-NCC); Pseudomonas species; bioconversion.COA of Formula: C4H6N2O2S.

The authors investigated the conversion of D,L-2-amino-Δ2-thiazoline-4-carboxylic (D,L-ATC) to L-cysteine with Pseudomonas sp. ON-4a, an ATC-assimilating bacterium. Cysteine and N-carbamoylcysteine (NCC), but not S-carbamoylcysteine (SCC), were produced from D,L-ATC by a cell-free extract from the strain. These products were isolated from the reaction mixture and then identified as the L-form. Similar results were obtained with P. putida AJ3865 and unidentified strain TG-3, an ATC-assimilating bacteria. It became clear that L-NCC is an intermediate in the conversion of D,L-ATC to L-cysteine in these Pseudomonas strains. Furthermore, it was suggested that these bacteria have L-ATC hydrolase and L-NCC amidohydrolase.

Compound(2150-55-2)COA of Formula: C4H6N2O2S received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Final Thoughts on Chemistry for 2150-55-2

Compound(2150-55-2)Safety of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Kinetics of the cyanide-cystine reaction》. Authors are Gawron, Oscar; Fernando, Joseph.The article about the compound:2-Amino-4,5-dihydrothiazole-4-carboxylic acidcas:2150-55-2,SMILESS:O=C(C1N=C(N)SC1)O).Safety of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. Through the article, more information about this compound (cas:2150-55-2) is conveyed.

The kinetics of the cystine-cyanide reaction was studied in 0.04M KOH at pH 12.5 by a spectrophotometric method. The reaction was bimol., with cyclization of the thiocyanato product much faster than the reverse reaction. Activation parameters at 35° were: Ea, 16.8 kcal./mole; ΔH*, 16.1 kcal./mole; and ΔS*, -7.4 e.u. The entropy of activation was about the same as that for the cyanide-S8 reaction but about 20 e.u. less than that for the cystine-SO3–reaction; this indicated the activated complex for cystine-SO3– is more crowded than that for cystine-CN-.

Compound(2150-55-2)Safety of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Share an extended knowledge of a compound : 2150-55-2

Compound(2150-55-2)Electric Literature of C4H6N2O2S received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Electric Literature of C4H6N2O2S. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Cyanide Toxicokinetics: The Behavior of Cyanide, Thiocyanate and 2-Amino-2-Thiazoline-4-Carboxylic Acid in Multiple Animal Models. Author is Bhandari, Raj K.; Oda, Robert P.; Petrikovics, Ilona; Thompson, David E.; Brenner, Matthew; Mahon, Sari B.; Bebarta, Vikhyat S.; Rockwood, Gary A.; Logue, Brian A..

Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct anal. of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN-) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250-300 g), (ii) rabbits (3.5-4.2 kg) and (iii) swine (47-54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymically converted to SCN-. Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide s.c. and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide i.v. and the t1/2 was determined to be 177 min. Swine were administered cyanide i.v. and the t1/2 was determined to be 26.9 min. The SCN- t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN- concentrations did not reach a maximum The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, resp., while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN- in each animal model and ATCA may be used when the ATCA detoxification pathway is significant.

Compound(2150-55-2)Electric Literature of C4H6N2O2S received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The influence of catalyst in reaction 2150-55-2

Compound(2150-55-2)Application of 2150-55-2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Application of 2150-55-2. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Medium optimization for enzymatic production of L-cysteine by Pseudomonas sp. Zjwp-14 using response surface methodology. Author is Lv, Guo-Ying; Wang, Pu; He, Jun-Yao; Li, Xiao-Nian.

Response surface methodol. was applied to optimize medium constituents for enzymic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) by a novel Pseudomonas sp. Zjwp-14. With the Plackett-Burman design experiment, glycerol, DL-ATC, yeast extract, and pH were found to be the most powerful factors among the eight tested variables that influence intracellular enzyme activity for biotransformation of DL-ATC to L-cysteine. In order to investigate the quant. effects for four variables selected from Plackett-Burman design on enzyme activity, a central composite design was subsequently employed for further optimization. The determination coefficient (R2) was 0.9817, and the results show that the regression models adequately explain the data variation and represent the actual relationships between the parameters and responses. The optimal medium for Pseudomonas sp. Zjwp-14 was composed of (in g/L): glycerol 16.94, DL-ATC 4.59, yeast extract 6.99, NaCl 5.0, peptone 5.0, beef extract 5.0, MgSO4·7H2O 0.4, and pH=7.94. Under the optimal conditions, the maximum intracellular enzyme activity of 918.7 U/mL in theory and 903.6 U/mL in the experiment were obtained, with an increase of 15.6 % compared to the original medium components. In a 5-L fermentor, cultivation time for Pseudomonas sp. Zjwp-14 was cut down for 6 h and the maximum enzyme activity reached 929.6 U/mL.

Compound(2150-55-2)Application of 2150-55-2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Let`s talk about compounds: 2150-55-2

Compound(2150-55-2)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Metabolic control analysis of L-cysteine producing strain TS1138 of Pseudomonas sp. Author is Huai, Lihua; Chen, Ning; Yang, Wenbo; Bai, Gang.

A kinetic model describing the biosynthesis of L-cysteine by Pseudomonas sp. TS1138 has been developed. The two enzymes catalyzing this pathway, L-cysteine synthetase (CS) and L-cysteine desulfhydrase (CD), follow Michaelis-Menten kinetics with noncompetitive inhibition of CS by L-cysteine. From measurements of intermediates and end products that were made during L-cysteine enzymic synthesis, metabolic control anal. of the pathway was carried out using the kinetic model. The elasticity coefficients and the flux control coefficients were calculated, and the anal. revealed a shift in the flux control from CS to CD during the reaction. The findings further implicate potential targets and strategies for increasing L-cysteine production; for example, the strain TS1138 could be manipulated by site-directed mutagenesis to reduce CD activity.

Compound(2150-55-2)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

A new synthetic route of 2150-55-2

Compound(2150-55-2)Application of 2150-55-2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Effects of anoxic conditions on the enzymic conversion of DL-2-aminothiazoline-4-carboxylic acid to L-cystine.Application of 2150-55-2.

The effects of anoxic conditions on product inhibition and the stability of L-2-aminothiazoline-4-carboxylic acid (L-ATC) hydrolase were investigated in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cystine (I) using the cell-free extract enzyme of Pseudomonas sp. in the presence of hydroxylamine. At L-cysteine (II) equivalent levels (I:II = 1:2), I inhibited the L-ATC hydrolase reaction to a greater extent than II. In air, the product occurred predominantly as I (94.9%), whereas in a N2 atm. the product occurred as a mixture of II (39.3%) and I (40.7%). Less product inhibition took place in N. The activity of L-ATC hydrolase was almost fully lost after 20 h of incubation by shaking at 30° in air, but considerable activity remained under the anoxic conditions of N2. A kinetic anal. of the reactions confirmed that reduced product inhibition and enhanced enzyme stability in N2 result in a more efficient enzyme reaction. The inactivation rate constant (k1) was estimated to be 0.11/h in N2 and 0.22/h in air, indicating that the stability of L-ATC hydrolase in N2 was greater than in air. The values of the Kp1 and Kp2 constants related to product inhibition were 43.36 mM and 30.48 mM for II and I, resp., where higher values were an indication of less product inhibition. The value of the rate constant (k2) for the oxidation of II to I was 0.09/h in N2 and 1.01/h in air, suggesting that the II oxidation to I proceeds faster in air than in N2.

Compound(2150-55-2)Application of 2150-55-2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem