Top Picks: new discover of 2150-55-2

Compound(2150-55-2)Computed Properties of C4H6N2O2S received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Kinetics of the cyanide-cystine reaction》. Authors are Gawron, Oscar; Fernando, Joseph.The article about the compound:2-Amino-4,5-dihydrothiazole-4-carboxylic acidcas:2150-55-2,SMILESS:O=C(C1N=C(N)SC1)O).Computed Properties of C4H6N2O2S. Through the article, more information about this compound (cas:2150-55-2) is conveyed.

The kinetics of the cystine-cyanide reaction was studied in 0.04M KOH at pH 12.5 by a spectrophotometric method. The reaction was bimol., with cyclization of the thiocyanato product much faster than the reverse reaction. Activation parameters at 35° were: Ea, 16.8 kcal./mole; ΔH*, 16.1 kcal./mole; and ΔS*, -7.4 e.u. The entropy of activation was about the same as that for the cyanide-S8 reaction but about 20 e.u. less than that for the cystine-SO3–reaction; this indicated the activated complex for cystine-SO3– is more crowded than that for cystine-CN-.

Compound(2150-55-2)Computed Properties of C4H6N2O2S received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extracurricular laboratory: Synthetic route of 2150-55-2

From this literature《LC-MS/MS method development and validation for quantitative analyses of 2-aminothiazoline-4-carboxylic acid – a new cyanide exposure marker in post mortem blood》,we know some information about this compound(2150-55-2)Safety of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid(SMILESS: O=C(C1N=C(N)SC1)O,cas:2150-55-2) is researched.Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. The article 《LC-MS/MS method development and validation for quantitative analyses of 2-aminothiazoline-4-carboxylic acid – a new cyanide exposure marker in post mortem blood》 in relation to this compound, is published in Talanta. Let’s take a look at the latest research on this compound (cas:2150-55-2).

2-Aminothiazoline-4-carboxylic acid (ATCA) is a hydrogen cyanide metabolite that has been found to be a reliable biomarker of cyanide poisoning, because of its long-term stability in biol. material. There are several methods of ATCA determination; however, they are restricted to extraction on mixed mode cation exchange sorbents. To date, there has been no reliable method of ATCA determination in whole blood, the most frequently used material in forensic anal. This novel method for ATCA determination in post mortem specimen includes protein precipitation, and derivatization of interfering compounds and their later extraction with Et acetate. ATCA was quant. analyzed via HPLC-tandem mass spectrometry with pos. electrospray ionization detection using a hydrophilic interaction liquid chromatog. column. The method satisfied all validation criteria and was tested on the real samples with satisfactory results. Therefore, this anal. approach has been proven to be a tool for measuring endogenous levels of ATCA in post mortem specimens. To conclude, a novel, accurate and sensitive method of ATCA determination in post mortem blood was developed. The establishment of the method provides new possibilities in the field of forensic science.

From this literature《LC-MS/MS method development and validation for quantitative analyses of 2-aminothiazoline-4-carboxylic acid – a new cyanide exposure marker in post mortem blood》,we know some information about this compound(2150-55-2)Safety of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Introduction of a new synthetic route about 2150-55-2

From this literature《RECiQ: A Rapid and Easy Method for Determining Cyanide Intoxication by Cyanide and 2-Aminothiazoline-4-carboxylic Acid Quantification in the Human Blood Using Probe Electrospray Ionization Tandem Mass Spectrometry》,we know some information about this compound(2150-55-2)Application of 2150-55-2, but this is not all information, there are many literatures related to this compound(2150-55-2).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 2150-55-2, is researched, SMILESS is O=C(C1N=C(N)SC1)O, Molecular C4H6N2O2SJournal, Article, ACS Omega called RECiQ: A Rapid and Easy Method for Determining Cyanide Intoxication by Cyanide and 2-Aminothiazoline-4-carboxylic Acid Quantification in the Human Blood Using Probe Electrospray Ionization Tandem Mass Spectrometry, Author is Hisatsune, Kazuaki; Murata, Tasuku; Ogata, Koretsugu; Hida, Minemasa; Ishii, Akira; Tsuchihashi, Hitoshi; Hayashi, Yumi; Zaitsu, Kei, the main research direction is forensic RECiQ ESIMSMS cyanide intoxication aminothiazolinecarboxylate blood biomarker.Application of 2150-55-2.

In this study, we developed a rapid and easy method to determine cyanide (CN) intoxication by quantification of CN and 2-aminothiazoline-4-carboxylic acid (ATCA), which is a new and reliable indicator of CN exposure, in the human blood using probe electrospray ionization tandem mass spectrometry (PESI/MS/MS) named RECiQ. For CN, we applied the previously reported one-pot derivatization method using 2,3-naphthalene-dialdehyde and taurine, which can directly derivatize CN in the blood. The anal. conditions of the CN derivatization were optimized as a 10 min reaction time at room temperature In contrast, ATCA could be directly detected in the blood by PESI/MS/MS. We developed quant. methods for the derivatized CN and ATCA using an internal standard method and validated them using quality control samples, demonstrating that the linearities of each calibration curve were greater than 0.995, and intra- and interday precisions and accuracies were 5.1-15 and 1.1-14%, resp. Moreover, the lower limit of detections for CN and ATCA were 42 and 43 ng/mL, resp. Finally, we applied RECiQ to three postmortem blood specimens obtained from victims of fire incidents, which resulted in the successful quantification of CN and ATCA in all samples. As PESI/MS/MS can be completed within 0.5 min, and the sample volume requirement of RECiQ is only 2μL of blood, these methods are useful not only for the rapid determination of CN exposure but also for the estimation of the CN intoxication levels during an autopsy.

From this literature《RECiQ: A Rapid and Easy Method for Determining Cyanide Intoxication by Cyanide and 2-Aminothiazoline-4-carboxylic Acid Quantification in the Human Blood Using Probe Electrospray Ionization Tandem Mass Spectrometry》,we know some information about this compound(2150-55-2)Application of 2150-55-2, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 2150-55-2

From this literature《Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin》,we know some information about this compound(2150-55-2)Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Wang, Pu; He, Jun-Yao; Yin, Jiang-Feng researched the compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid( cas:2150-55-2 ).Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid.They published the article 《Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin》 about this compound( cas:2150-55-2 ) in Bioprocess and Biosystems Engineering. Keywords: cysteine biocatalytic production Pseudomonas anion exchange resin. We’ll tell you more about this compound (cas:2150-55-2).

Bioconversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of L-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated L-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve L-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of DL-ATC for the in situ removal of L-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for L-cysteine and low adsorption for DL-ATC, which is a favorable option. With in situ addition of 60 g L-1 resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L-1 of DL-ATC was converted to L-cysteine with 90.4 % of yield and 28.6 mmol L-1 h-1 of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of L-cysteine was improved by 2.27-fold using ISPR method.

From this literature《Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin》,we know some information about this compound(2150-55-2)Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Top Picks: new discover of 2150-55-2

From this literature《Enzymatic production of cystine in commercial plant》,we know some information about this compound(2150-55-2)Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Enzymatic production of cystine in commercial plant. Author is Yamamoto, Yasushi; Fujita, Itsuo; Horino, Issei; Kouda, Tohru; Akashi, Kunihiko.

For the enzymic production of cystine in a com. plant, the improvement of reaction process, the purification procedure, and the removal process of hydrogen sulfide were studied. Fed-batch process was adapted to the enzymic reaction and optimized. In the purification process, contaminating Fe ion was excluded from cystine products by adding chelating agent and the co-produced hydrogen sulfide was removed by an oxidation method. An improved process was realized in the industrial plant.

From this literature《Enzymatic production of cystine in commercial plant》,we know some information about this compound(2150-55-2)Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Never Underestimate the Influence Of 2150-55-2

From this literature《Spectrophotometric analysis of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA)》,we know some information about this compound(2150-55-2)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Spectrophotometric analysis of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA). Author is Baskin, Steven I.; Petrikovics, Ilona; Platoff, Gennady E.; Rockwood, Gary A.; Logue, Brian A..

Methods of directly evaluating cyanide levels are limited by the volatility of cyanide and by the difficulty of establishing steady-state cyanide levels with time. We investigated the measurement of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), in an attempt to circumvent the challenge of directly determining cyanide concentrations in aqueous media. This study was focused on the spectrophotometric ATCA determination in the presence of cyanide, thiocyanate (SCN-), cysteine, rhodanese, thiosulfate, and other sulfur donors. The method involves a thiazolidine ring opening in the presence of p-(hydroxy-mercury)-benzoate, followed by the reaction with diphenylthiocarbazone (dithizone). The product is spectrophotometrically analyzed at 625 nm in CCl4. The calibration curve was linear with a regression line of Y = 0.0022x (R2 = 0.9971). Interference of cyanide antidotes with the method was determined Cyanide, thiosulfate, butanethiosulfonate (BTS), and rhodanese did not appreciably interfere with the anal., but SCN- and cysteine significantly shifted the standard curve. This sensitive spectrophotometric method has shown promise as a substitute for the measurement of the less stable cyanide.

From this literature《Spectrophotometric analysis of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA)》,we know some information about this compound(2150-55-2)Name: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Let`s talk about compounds: 2150-55-2

From this literature《Kinetics of the cyanide-cystine reaction》,we know some information about this compound(2150-55-2)SDS of cas: 2150-55-2, but this is not all information, there are many literatures related to this compound(2150-55-2).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Kinetics of the cyanide-cystine reaction》. Authors are Gawron, Oscar; Fernando, Joseph.The article about the compound:2-Amino-4,5-dihydrothiazole-4-carboxylic acidcas:2150-55-2,SMILESS:O=C(C1N=C(N)SC1)O).SDS of cas: 2150-55-2. Through the article, more information about this compound (cas:2150-55-2) is conveyed.

The kinetics of the cystine-cyanide reaction was studied in 0.04M KOH at pH 12.5 by a spectrophotometric method. The reaction was bimol., with cyclization of the thiocyanato product much faster than the reverse reaction. Activation parameters at 35° were: Ea, 16.8 kcal./mole; ΔH*, 16.1 kcal./mole; and ΔS*, -7.4 e.u. The entropy of activation was about the same as that for the cyanide-S8 reaction but about 20 e.u. less than that for the cystine-SO3–reaction; this indicated the activated complex for cystine-SO3– is more crowded than that for cystine-CN-.

From this literature《Kinetics of the cyanide-cystine reaction》,we know some information about this compound(2150-55-2)SDS of cas: 2150-55-2, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New downstream synthetic route of 2150-55-2

From this literature《Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers》,we know some information about this compound(2150-55-2)Synthetic Route of C4H6N2O2S, but this is not all information, there are many literatures related to this compound(2150-55-2).

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov’t, Non-P.H.S., Biomarkers called Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers, Author is Vinnakota, Chakravarthy V.; Peetha, Naga S.; Perrizo, Mitch G.; Ferris, David G.; Oda, Robert P.; Rockwood, Gary A.; Logue, Brian A., which mentions a compound: 2150-55-2, SMILESS is O=C(C1N=C(N)SC1)O, Molecular C4H6N2O2S, Synthetic Route of C4H6N2O2S.

Cyanide is highly toxic and is present in many foods, combustion products (e.g. cigarette smoke), industrial processes, and has been used as a terrorist weapon. In this study, cyanide and its major metabolites, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid (ATCA), were analyzed from various human biofluids of smokers (low-level chronic cyanide exposure group) and non-smokers to gain insight into the relationship of these biomarkers to cyanide exposure. The concentrations of each biomarker tested were elevated for smokers in each biofluid. Significant differences (p < 0.05) were found for thiocyanate in plasma and urine, and ATCA showed significant differences in plasma and saliva. Addnl., biomarker concentration ratios, correlations between markers of cyanide exposure, and other statistical methods were performed to better understand the relationship between cyanide and its metabolites. Of the markers studied, the results indicate plasma ATCA, in particular, showed excellent promise as a biomarker for chronic low-level cyanide exposure. From this literature《Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers》,we know some information about this compound(2150-55-2)Synthetic Route of C4H6N2O2S, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Chemical Properties and Facts of 2150-55-2

From this literature《Spectrophotometric analysis of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA)》,we know some information about this compound(2150-55-2)HPLC of Formula: 2150-55-2, but this is not all information, there are many literatures related to this compound(2150-55-2).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid( cas:2150-55-2 ) is researched.HPLC of Formula: 2150-55-2.Baskin, Steven I.; Petrikovics, Ilona; Platoff, Gennady E.; Rockwood, Gary A.; Logue, Brian A. published the article 《Spectrophotometric analysis of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA)》 about this compound( cas:2150-55-2 ) in Toxicology Mechanisms and Methods. Keywords: cyanide metabolite aminothiazoline carboxylic acid preparation spectrophotometry. Let’s learn more about this compound (cas:2150-55-2).

Methods of directly evaluating cyanide levels are limited by the volatility of cyanide and by the difficulty of establishing steady-state cyanide levels with time. We investigated the measurement of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), in an attempt to circumvent the challenge of directly determining cyanide concentrations in aqueous media. This study was focused on the spectrophotometric ATCA determination in the presence of cyanide, thiocyanate (SCN-), cysteine, rhodanese, thiosulfate, and other sulfur donors. The method involves a thiazolidine ring opening in the presence of p-(hydroxy-mercury)-benzoate, followed by the reaction with diphenylthiocarbazone (dithizone). The product is spectrophotometrically analyzed at 625 nm in CCl4. The calibration curve was linear with a regression line of Y = 0.0022x (R2 = 0.9971). Interference of cyanide antidotes with the method was determined Cyanide, thiosulfate, butanethiosulfonate (BTS), and rhodanese did not appreciably interfere with the anal., but SCN- and cysteine significantly shifted the standard curve. This sensitive spectrophotometric method has shown promise as a substitute for the measurement of the less stable cyanide.

From this literature《Spectrophotometric analysis of the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA)》,we know some information about this compound(2150-55-2)HPLC of Formula: 2150-55-2, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Chemical Properties and Facts of 2150-55-2

From this literature《One-pot synthesis of DL-2-amino-2-thiazoline-4-carboxylic acid》,we know some information about this compound(2150-55-2)Category: pyrazines, but this is not all information, there are many literatures related to this compound(2150-55-2).

Category: pyrazines. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about One-pot synthesis of DL-2-amino-2-thiazoline-4-carboxylic acid. Author is Xuan, Richeng; Hu, Weixiao; Yang, Zhongyu.

DL-2-Amino-2-thiazoline-4-carboxylic acid was prepared in one-pot reaction from 2,3-dichloropropionic acid. Not only the procedure was simplified, but also the yield was increased from less than 63% recorded to 93%.

From this literature《One-pot synthesis of DL-2-amino-2-thiazoline-4-carboxylic acid》,we know some information about this compound(2150-55-2)Category: pyrazines, but this is not all information, there are many literatures related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem