New downstream synthetic route of 19847-12-2

The synthetic route of 19847-12-2 has been constantly updated, and we look forward to future research findings.

Electric Literature of 19847-12-2, These common heterocyclic compound, 19847-12-2, name is Pyrazinecarbonitrile, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

The synthesis of 2-aminomethylpyrazine (2-AMPZ) was synthesized according to the method described below with reference to the method described in the literature (Japanese Patent Laid-Open No. 2001-894594). 2-cyanopyrazine is 1.05 g (10 mmol) of 2-cyanopyrazine using Aldrich reagent and 100 mg of 60 wt% Ni / SiO2 was charged into a SUS316 autoclave together with 20 mL of toluene and purged with argon gas.This was pressurized to 50 atm with hydrogen gas and stirred at 140 C. for 4 hours.The reaction solution was filtered and concentrated to quantitatively obtain 2-aminomethylpyrazine (2-AMPZ).

The synthetic route of 19847-12-2 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Kanto Chemical Co., Inc.; Hokkaido University; Katayama, Takeaki; Tsutsumi, Kunihiko; Murata, Kunihiko; Ohkuma, Takeshi; Arai, Noriyoshi; (35 pag.)JP2019/11367; (2019); A;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of 19847-12-2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 19847-12-2, its application will become more common.

Some common heterocyclic compound, 19847-12-2, name is Pyrazinecarbonitrile, molecular formula is C5H3N3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. Recommanded Product: 19847-12-2

To a solution of pyrazine-2-carbonitrile 13 (6.90 g, 65.65 mmol) in toluene (48 mL) and DMF (5 mL) was added sulfuryl chloride (21.2 mL, 260.8 mmol) over 10 min. The reaction mixture was stirred for 30 min in an ice bath, then allowed to warm up to room temperature gradually, after which it was stirred for 5 h. The toluene layer was decanted, and the reddish oil residue was extracted three times with diethyl ether. The combined toluene and ether layers were quenched with ice water and cooled in an ice bath. The combined layers were then neutralized with solid NaHCO3, then separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with water, dried over anhydrous Na2SO4, filtered, and the solvent was evaporated under reduced pressure to afford the title compound. The crude product was purified by silica gel chromatography (eluent: 100% dichloromethane) to give 3-chloropyrazine-2-carbonitrile 14 as a white powder (4.7 g, 51%). Rf = 0.76 (dichloromethane); mp 44-46 C (lit. [14] : 47-48 C); IR (KBr) numax (cm-1): 3088 (nuCHar), 2242 (nuCN), 1377 (nuC=C), 1087 (nuC-N); 1H NMR (400 MHz, DMSO-d6): delta 8.91 (d, 1H, J = 2.4 Hz, H-6), 8.88 (d, 1H, J = 2.4 Hz, H-5); 13C NMR (100 MHz, DMSO-d6): delta 150.67 (C-3), 147.97 (C-5), 144.26 (C-6), 129.87 (C-2), 114.66 (CN); MS (ESI) m/z (%): 140.3 (100) [M + H]+, 142.3 (40) [M + H + 2]+. Anal. calcd for C5H2ClN3: C, 43.04; H, 1.44; N, 30.11. Found: C, 43.18; H, 1.45; N, 30.16.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 19847-12-2, its application will become more common.

Reference:
Article; Loidreau, Yvonnick; Marchand, Pascal; Dubouilh-Benard, Carole; Nourrisson, Marie-Renee; Duflos, Muriel; Lozach, Olivier; Loaec, Nadege; Meijer, Laurent; Besson, Thierry; European Journal of Medicinal Chemistry; vol. 58; (2012); p. 171 – 183;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Analyzing the synthesis route of 19847-12-2

The synthetic route of 19847-12-2 has been constantly updated, and we look forward to future research findings.

Application of 19847-12-2,Some common heterocyclic compound, 19847-12-2, name is Pyrazinecarbonitrile, molecular formula is C5H3N3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

In a 250 mL round-bottomed flask, pyrazine-2-carbonitrile (10 g, 95.1 mmol), pyridine (2.26 g, 2.33 ml, 28.5 mmol) and 2-mercaptopropionic acid (10.1 g, 95.1 mmol) were combined to give a light yellow solution. The reaction mixture was heated to 100 C. and stirred for 2 h. Upon cooling, the thick yellow mixture was diluted with 100 mL ethanol and stirred for 30 min. The slurry was then filtered, and washed with diethyl ether (2*100 mL) to give 5-methyl-2-pyrazin-2-yl-thiazol-4-ol (17.86 g, 97.1%) as yellow solid which was used directly without further purification. Trifluoro-methanesulfonic acid 5-methyl-2-pyrazin-2-yl-thiazol-4-yl ester:

The synthetic route of 19847-12-2 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Hoffmann-La Roche Inc.; Alam, Muzaffar; Bhagirath, Niala; Du Bois, Daisy Joe; Hawley, Ronald Charles; Minatti, Ana Elena; Kennedy-Smith, Joshua; Wilhelm, Robert Stephen; US2013/158040; (2013); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 19847-12-2

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Adding a certain compound to certain chemical reactions, such as: 19847-12-2, name is Pyrazinecarbonitrile, belongs to Pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 19847-12-2, Formula: C5H3N3

In order to expand the scope of this flow method, a variety of nitriles were subjected to the optimized conditions in the entry 6 (Table 1), and the results are summarized in Tables 3 and 4 {Method A). For substrates 2 and 3, where no electron- donating or electron- withdrawing group was present on the aromatic ring, or substrate 4 where the nitrile was rendered electron poor by the presence of electron- withdrawing group at the para position, the reactions proceeded to 100% conversions without the formation of any side product. Similarly, meta tolunitrile (5) and the hetero aromatic substrates (6-8) also showed excellent conversions. Electron rich nitriles 10 and 10 reacted to give moderate but clean conversions to the corresponding tetrazoles. The biphenyl nitriles 9, 13 and 14 also proved to be good substrates for this reaction regardless of position of the phenolic hydroxy group on the second aromatic ring.Notably, chiral nitrile 15 provided 15a, a derivative of which (no CBZ group) has found utility as an organocatalyst, in > 99% ee and 92% yield based on conversion. To test if an increase in the ? can drive the reaction of moderately yielding substrates to completion, the model substrate 1 was reacted at a ? of 30 min (Table 4). There was no significant change in the conversion observed; instead a small amount of hydrolysis product la was formed. However, significant improvement in the reaction rate was observed by doubling the concentration of the reaction (0.4 M). For nitrile 1, the conversion increased from 65% to 81% (? = 30 min), while similar improvement in conversions were observed for substrates 11 and 13-15 when the reaction concentration was doubled.As this continuous flow method has the advantage of using high temperatures in a safe manner, it was determined that the presence of a catalyst (e.g., ZnBr2) was not essential for all reactions carried out at these temperatures. To test this, the flow process was repeated with selected substrates without the use of ZnBr2 (Tables 3 and 4, Method B). The non- substituted benzo- and napthonitrile substrates (2 and 3), electron poor nitrile (4), and the heterocyclic substrates (6, 7 and 8), all showed excellent conversions to corresponding tetrazoles in the absence of ZnBr2. The conversions were found to decrease moderately in case of biphenyl substrates 9, 13 and 14 indicating decrease in the reaction rate of these substrates in the absence of ZnBr2. Similar decrease in conversion was observed for the electron rich substrates (1 and 12), but it was noted that there was no side product observed in the absence of ZnBr2 even at 30 min of residence time. This shows that ZnBr2 may be promoting the competing side reaction. Thus, the use of ZnBr2 may be useful for enhancing the conversion of the electron-rich nitriles, but can also lead to formation of side product. In many, if not all instances, reactions without ZnBr2 can give clean conversions. To demonstrate the scale-up capabilities of this, the synthesis of 3a was carried out using aUniqsis FlowSyn continuous flow reactor. FlowSyn is an integrated continuous flow reactor system that uses a pair of high pressure pumps to deliver reagent solutions through a ‘T’-mixer into the electrically heated flow coil or column reactors. The homogenous solution of reagents ([3] = 1M; [NaN3] = 1.05 M) in NMP:H20 (7:3) was pumped using a single pump through a coiled PFA tubing reactor (volume of heated zone ~ 6.9 mL) with a flow rate of 0.35 mL/min (tr = 20 min) at 190 C (see Example 2). The flow process was run continuously for 2.5 h to obtain 9.7 g of 3a in 96 % yield. This corresponds to a product output of 4.85 g/h or 116 g/day for the tetrazole 3a.Overall, the method performed is a safer alternative for currently used methods to synthesize 5-substituted tetrazoles as the hazards due to accumulation and condensation of HN3 are greatly minimized. Only uses a slight excess of NaN3 (1.05 equiv) was used, and hence the production of azide waste is minimal. The method is highly efficient and clean, and works for a wide range of substrates. In case of substrates where the reaction does not go to completion, the remaining NaN3 in the reaction can be quenched by introducing streams of sodium nitrite and sulfuric acid after the reaction is complete. The incorporation of this quenching procedure increases the overall safety of the process. Therefore, given the widespread applications of tetrazoles in chemical andpharmaceutical industry, this method can serve as a safe and highly efficient alternative for synthesis of tetrazoles.EXAMPLE 2This example provides additional experimental details and data in connection with Example 1.General protocol for continuous flow synthesis of tetrazoles (Method A):Sodium azide (68 mg, 1.05 mmol) was added to a solution of zinc bromide (111 mg, 0.5 mmol) in 0.5 mL water. To this solution was added the nitrile substrate (1 mmol) dissolved in 4.5 mL of N-methylpyrrolidone (NMP) and the result…

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Patent; MASSACHUSETTS INSTITUTE OF TECHNOLOGY; JAMISON, Timothy, F.; PALDE, Prakash, B.; WO2012/24495; (2012); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Share a compound : 19847-12-2

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 19847-12-2, name is Pyrazinecarbonitrile, A new synthetic method of this compound is introduced below., SDS of cas: 19847-12-2

General procedure: Sodium metal (23 mg) was dissolved in absolute methanol (20 ml) and was labeled as sodium methoxide solution in methanol. 2-Cyanopyridine (0.210 ml, 2 mmol) was dissolved in absolute methanol (10 ml) and to it was added sodium methoxide solution (0.5 ml) prepared above, the reaction contents were stirred at room temperature for 2 h. 4-(2-Aminoethyl) morpholine (0.26 ml, 2 mmol) was added to the reaction mixture. The reaction contents were heated under reflux for 8 h. Solvent was removed under reduced pressure and to the residue left behind was added diethyl ether, solid so obtained was filtered and washed with diethyl ether to give crude product. This crude product was purified by crystallization from ethyl acetate/methanol to give pure N-(2-morpholin-4-yl-ethyl)-pyridine-2-carboxamidine (3a).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Article; Arya, Surbhi; Kumar, Nikhil; Roy, Partha; Sondhi; European Journal of Medicinal Chemistry; vol. 59; (2013); p. 7 – 14;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Application of 19847-12-2

The synthetic route of 19847-12-2 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 19847-12-2, name is Pyrazinecarbonitrile belongs to Pyrazines compound, it is a common compound, a new synthetic route is introduced below. Product Details of 19847-12-2

Example 8 Synthesis of the primary amine, pyrazin-2-ylmethanamine Raney nickel catalyst was carefully washed with THF and methanol making sure that the catalyst remained moist. The weight of the moist catalyst was 2.5 g after washing. This material was added to a solution of pyrazinecarbonitrile (17) (3.0 g) in 7N methanolic ammonia (120 mL). The mixture was shaken under a 50 p.s.i. atmosphere of hydrogen for 1.5 hours. The mixture was filtered and the filtrate was concentrated in vacuo to provide the crude title compound. Purification was accomplished by conversion of the crude amine to the tert-butyl carbamate with excess di-tert-butyl dicarbonate in methylene chloride. Column chromatography (70:27:3 hexanes:ethyl acetate:methanol) provided 0.50 g of pure tert-butyl pyrazin-2-ylmethylcarbamate.

The synthetic route of 19847-12-2 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; PHARMACOPEIA DRUG DISCOVERY, INC.; US2008/119496; (2008); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Extracurricular laboratory: Synthetic route of 19847-12-2

The synthetic route of Pyrazinecarbonitrile has been constantly updated, and we look forward to future research findings.

Reference of 19847-12-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 19847-12-2, name is Pyrazinecarbonitrile belongs to Pyrazines compound, it is a common compound, a new synthetic route is introduced below.

General procedure: 2-Cyanopyridine (0.420 ml; 4 mmol) was dissolved in absolute methanol (20 ml) and to it was added sodium methoxide solution in methanol (1.0 ml) (previously prepared). The reaction contents were stirred at room temperature for 2 h 1,4-diaminobutane (0.18 ml, 2 mmol) was added to the reaction mixture. Reaction contents were heated under reflux for 12 h. Solvent was removed under reduced pressure. Crude product so obtained was washed with diethyl ether and then with ethyl acetate to give thick mass. Solvent traces from this thick mass was removed by applying high vacuum for 15 min to give semisolid product i.e. N-(2-pyridineimidoylamino-butyl)-pyridine-2-carboxamidine (5a). Yield 480 mg (81%).

The synthetic route of Pyrazinecarbonitrile has been constantly updated, and we look forward to future research findings.

Reference:
Article; Arya, Surbhi; Kumar, Nikhil; Roy, Partha; Sondhi; European Journal of Medicinal Chemistry; vol. 59; (2013); p. 7 – 14;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New downstream synthetic route of 19847-12-2

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 19847-12-2, name is Pyrazinecarbonitrile, A new synthetic method of this compound is introduced below., Computed Properties of C5H3N3

Pyrazine-2-carbonitrile (10.5 g, 100 mmol) was dissolved in PhMe (100 mL) at 0 C. and 4-chlorophenyl magnesium bromide (100 ml, 1.0 M in Et2O, 100 mmol) was added portion-wise over 5 min. The reaction mixture was stirred for 6 h and NaBH4 (7.58 g, 201 mmol) and tBuOH (100 mL) were added. The reaction mixture was warmed to 60 C. for 18 h and quenched with 1 M aq NaOH solution. The aqueous layer was extracted with EtOAc and the combined organic layers were dried (MgSO4) and concentrated in vacuo. The residue was purified by flash chromatography (DCM:EtOH:NH3 200:8:1 to 50:8:1) to give the title compound as a brown oil (7.46 g, 34%). MS (ESI+) m/z=220.0 (M+H)+.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; PROXIMAGEN LIMITED; Evans, David; Carley, Allison; Stewart, Alison; Higginbottom, Michael; Savory, Edward; Simpson, Iain; Nilsson, Marianne; Haraldsson, Martin; Nordling, Erik; Koolmeister, Tobias; US2013/102587; (2013); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

A new synthetic route of 19847-12-2

According to the analysis of related databases, 19847-12-2, the application of this compound in the production field has become more and more popular.

Synthetic Route of 19847-12-2, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 19847-12-2 as follows.

General procedure: Sodium metal (23 mg) was dissolved in absolute methanol (20 ml) and was labeled as sodium methoxide solution in methanol. 2-Cyanopyridine (0.210 ml, 2 mmol) was dissolved in absolute methanol (10 ml) and to it was added sodium methoxide solution (0.5 ml) prepared above, the reaction contents were stirred at room temperature for 2 h. 4-(2-Aminoethyl) morpholine (0.26 ml, 2 mmol) was added to the reaction mixture. The reaction contents were heated under reflux for 8 h. Solvent was removed under reduced pressure and to the residue left behind was added diethyl ether, solid so obtained was filtered and washed with diethyl ether to give crude product. This crude product was purified by crystallization from ethyl acetate/methanol to give pure N-(2-morpholin-4-yl-ethyl)-pyridine-2-carboxamidine (3a).

According to the analysis of related databases, 19847-12-2, the application of this compound in the production field has become more and more popular.

Reference:
Article; Arya, Surbhi; Kumar, Nikhil; Roy, Partha; Sondhi; European Journal of Medicinal Chemistry; vol. 59; (2013); p. 7 – 14;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Introduction of a new synthetic route about 19847-12-2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Pyrazinecarbonitrile, its application will become more common.

Related Products of 19847-12-2,Some common heterocyclic compound, 19847-12-2, name is Pyrazinecarbonitrile, molecular formula is C5H3N3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a solution of pyrazine-2-carbonitrile 13 (6.90 g, 65.65 mmol) in toluene (48 mL) and DMF (5 mL) was added sulfuryl chloride (21.2 mL, 260.8 mmol) over 10 min. The reaction mixture was stirred for 30 min in an ice bath, then allowed to warm up to room temperature gradually, after which it was stirred for 5 h. The toluene layer was decanted, and the reddish oil residue was extracted three times with diethyl ether. The combined toluene and ether layers were quenched with ice water and cooled in an ice bath. The combined layers were then neutralized with solid NaHCO3, then separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with water, dried over anhydrous Na2SO4, filtered, and the solvent was evaporated under reduced pressure to afford the title compound. The crude product was purified by silica gel chromatography (eluent: 100% dichloromethane) to give 3-chloropyrazine-2-carbonitrile 14 as a white powder (4.7 g, 51%). Rf = 0.76 (dichloromethane); mp 44-46 C (lit. [14] : 47-48 C); IR (KBr) numax (cm-1): 3088 (nuCHar), 2242 (nuCN), 1377 (nuC=C), 1087 (nuC-N); 1H NMR (400 MHz, DMSO-d6): delta 8.91 (d, 1H, J = 2.4 Hz, H-6), 8.88 (d, 1H, J = 2.4 Hz, H-5); 13C NMR (100 MHz, DMSO-d6): delta 150.67 (C-3), 147.97 (C-5), 144.26 (C-6), 129.87 (C-2), 114.66 (CN); MS (ESI) m/z (%): 140.3 (100) [M + H]+, 142.3 (40) [M + H + 2]+. Anal. calcd for C5H2ClN3: C, 43.04; H, 1.44; N, 30.11. Found: C, 43.18; H, 1.45; N, 30.16.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Pyrazinecarbonitrile, its application will become more common.

Reference:
Article; Loidreau, Yvonnick; Marchand, Pascal; Dubouilh-Benard, Carole; Nourrisson, Marie-Renee; Duflos, Muriel; Lozach, Olivier; Loaec, Nadege; Meijer, Laurent; Besson, Thierry; European Journal of Medicinal Chemistry; vol. 58; (2012); p. 171 – 183;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem