Decrypt The Mystery Of 1827-27-6

Here is a brief introduction to this compound(1827-27-6)Name: 5-Amino-2-fluoropyridine, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Majo, Vattoly J.; Arango, Victoria; Simpson, Norman R.; Prabhakaran, Jaya; Kassir, Suham A.; Underwood, Mark D.; Bakalian, Mihran; Canoll, Peter; John Mann, J.; Dileep Kumar, J. S. researched the compound: 5-Amino-2-fluoropyridine( cas:1827-27-6 ).Name: 5-Amino-2-fluoropyridine.They published the article 《Synthesis and in vitro evaluation of [18F]BMS-754807: A potential PET ligand for IGF-1R》 about this compound( cas:1827-27-6 ) in Bioorganic & Medicinal Chemistry Letters. Keywords: cyclopropylpyrazolylaminopyrrolotriazinylfluoropyridinylmethylpyrrolidinecarboxamide BMS754807 preparation PET ligand radiosynthesis; IGF IR imaging glioblastoma breast cancer pancreatic tumor. We’ll tell you more about this compound (cas:1827-27-6).

Radiosynthesis and in vitro evaluation of [18F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([18F]BMS-754807 or [18F] I) a specific IGF-1R inhibitor was performed. [18F]I demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard II(X= F) and corresponding bromo derivative II(X = X = Br), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [18F]TBAF in DMSO at 170 °C at high radiochem. purity and specific activity (1-2 Ci/μmol, N = 10). The proof of concept of IGF-IR imaging with [18F]I was demonstrated by in vitro autoradiog. studies using pathol. identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [18F]I can be a potential PET tracer for monitoring IGF-1R.

Here is a brief introduction to this compound(1827-27-6)Name: 5-Amino-2-fluoropyridine, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of 1827-27-6

Here is a brief introduction to this compound(1827-27-6)Product Details of 1827-27-6, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

Product Details of 1827-27-6. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-Amino-2-fluoropyridine, is researched, Molecular C5H5FN2, CAS is 1827-27-6, about Amide-containing α-hydroxytropolones as inhibitors of hepatitis B virus replication.

The Hepatitis B Virus (HBV) RNase H (RNaseH) is a promising but unexploited drug target. Here, we synthesized and analyzed a library of 57 amide-containing α-hydroxytropolones (αHTs) as potential leads for HBV drug development. Fifty percent effective concentrations ranged from 0.31 to 54μM, with selectivity indexes in cell culture of up to 80. Activity against the HBV RNaseH was confirmed in semi-quant. enzymic assays with recombinant HBV RNaseH. The compounds were overall poorly active against human RNase H1, with 50% inhibitory concentrations of 5.1 to >1,000μM. The aHTs had modest activity against growth of the fungal pathogen Cryptococcus neoformans, but had very limited activity against growth of the Gram – bacterium Escherichia coli and the Gram + bacterium Staphylococcus aureus, indicating substantial selectivity for HBV. A mol. model of the HBV RNaseH templated against the Ty3 RNaseH was generated. Docking the compounds to the RNaseH revealed the anticipated binding pose with the divalent cation coordinating motif on the compounds chelating the two Mn++ ions modeled into the active site. These studies reveal that that amide aHTs can be strong, specific HBV inhibitors that merit further assessment toward becoming anti-HBV drugs.

Here is a brief introduction to this compound(1827-27-6)Product Details of 1827-27-6, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of 1827-27-6

Here is a brief introduction to this compound(1827-27-6)SDS of cas: 1827-27-6, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 1827-27-6, is researched, SMILESS is NC1=CN=C(C=C1)F, Molecular C5H5FN2Journal, Article, European Journal of Medicinal Chemistry called Discovery of 2-(4-(2-fluoroethoxy)piperidin-1-yl)-9-methyl-9H-pyrrolo[2,3-b:4,5-c’]dipyridine ([18F]PI-2014) as PET tracer for the detection of pathological aggregated tau in Alzheimer’s disease and other tauopathies, Author is Gabellieri, Emanuele; Capotosti, Francesca; Molette, Jerome; Sreenivasachary, Nampally; Mueller, Andre; Berndt, Mathias; Schieferstein, Hanno; Juergens, Tanja; Varisco, Yvan; Oden, Felix; Schmitt-Willich, Heribert; Hickman, David; Dinkelborg, Ludger; Stephens, Andrew; Pfeifer, Andrea; Kroth, Heiko, the main research direction is preparation radiofluorine PET tracer imaging tau Alzheimer’s tauopathy; Alzheimer disease; Fluorine-18; Neuroimaging; Positron emission tomography imaging; Tauopathies.SDS of cas: 1827-27-6.

The compound screening was initiated with a direct staining assay to identify compounds binding to Tau aggregates and not Abeta plaques using human brain sections derived from late stage Alzheimer’s disease donors. The binding of Tau aggregate selective compounds was then quant. assessed with human brain derived paired helical filaments utilizing the label-free Back Scattering Interferometry assay. In vivo biodistribution experiments of selected fluorine-18 labeled compounds were performed in mice to assess brain uptake, brain washout, and defluorination. Compound 11 emerged as the most promising candidate, displaying high in vitro binding affinity and selectivity to neurofibrillary tangles. Fluorine-18 labeled compound 11 showed high brain uptake and rapid washout from the mouse brain with no observed bone uptake. Furthermore, compound 11 was able to detect Tau aggregates in tauopathy brain sections from corticobasal degeneration, progressive supranuclear palsy, and Pick’s disease donors. Thus, 2-(4-(2-fluoroethoxy)piperidin-1-yl)-9-methyl-9H-pyrrolo[2,3-b:4,5-c’]dipyridine (PI-2014, compound 11) was selected for characterization in a first-in-human study.

Here is a brief introduction to this compound(1827-27-6)SDS of cas: 1827-27-6, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Discovery of 1827-27-6

Here is a brief introduction to this compound(1827-27-6)Application of 1827-27-6, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5-Amino-2-fluoropyridine( cas:1827-27-6 ) is researched.Application of 1827-27-6.Boyer, David; Bauman, Jonathan N.; Walker, Daniel P.; Kapinos, Brendon; Karki, Kapil; Kalgutkar, Amit S. published the article 《Utility of MetaSite in improving metabolic stability of the neutral indomethacin amide derivative and selective cyclooxygenase-2 inhibitor 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-phenethyl-acetamide》 about this compound( cas:1827-27-6 ) in Drug Metabolism and Disposition. Keywords: NSAID indomethacin amide derivative indolacetamide preparation pharmacokinetics modeling. Let’s learn more about this compound (cas:1827-27-6).

Prediction of the metabolic sites for new compounds, synthesized or virtual, is important in the rational design of compounds with increased resistance to metabolism The aim of the present investigation was to use rational design together with MetaSite, an in silico tool for predicting metabolic soft spots, to synthesize compounds that retain their pharmacol. effects but are metabolically more stable in the presence of cytochrome P 450 enzymes. The model compound for these studies was the phenethyl amide (1) derivative of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Unlike the parent NSAID, 1 is a potent and selective cyclooxygenase-2 (COX-2) inhibitor and nonulcerogenic anti-inflammatory agent in the rat. This pharmacol. benefit is offset by the finding that 1 is very unstable in rat and human microsomes because of extensive P 4503 A4/2D6-mediated metabolism on the phenethyl group, exptl. observations that were accurately predicted by MetaSite. The information was used to design analogs with polar (glycinyl) and/or electron-deficient (fluorophenyl, fluoropyridinyl) amide substituents to reduce metabolism in 1. MetaSite correctly predicted the metabolic shift from oxidation on the amide substituent to O-demethylation for these compounds, whereas rat and human microsomal stability studies and pharmacokinetic assessments in the rat confirmed that the design tactics for improving pharmacokinetic attributes of 1 had worked in our favor. In addition, the fluorophenyl and pyridinyl amide derivatives retained the potent and selective COX-2 inhibition demonstrated with 1. Overall, the predictions from MetaSite gave useful information leading to the design of new compounds with improved metabolic properties.

Here is a brief introduction to this compound(1827-27-6)Application of 1827-27-6, if you want to know about other compounds related to this compound(1827-27-6), you can read my other articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem