New learning discoveries about 1827-27-6

The article 《Development of highly sensitive fluorescent assays for fatty acid amide hydrolase》 also mentions many details about this compound(1827-27-6)Recommanded Product: 1827-27-6, you can pay attention to it, because details determine success or failure

Huang, Huazhang; Nishi, Kosuke; Tsai, Hsing-Ju; Hammock, Bruce D. published an article about the compound: 5-Amino-2-fluoropyridine( cas:1827-27-6,SMILESS:NC1=CN=C(C=C1)F ).Recommanded Product: 1827-27-6. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1827-27-6) through the article.

Fatty acid amide hydrolase (FAAH) is a pharmaceutical target whose inhibition may lead to valuable therapeutics. Sensitive substrates for high-throughput assays are crucial for the rapid-screening FAAH inhibitors. Here we describe the development of novel and highly sensitive fluorescent assays for FAAH based on substituted aminopyridines. Examining the relationship between the structure and the fluorescence of substituted aminopyridines suggested that a methoxy group in the para position relative to the amino group in aminopyridines greatly increased the fluorescence (i.e., quantum yields approach unity). These novel fluorescent reporters had a high Stokes’ shift of 94 nm, and their fluorescence in buffer systems increased with pH values from neutral to basic. Fluorescent substrates with these reporters displayed a very low fluorescent background and high aqueous solubility Most importantly, fluorescent assays for FAAH based on these substrates were at least 25 times more sensitive than assays using related compounds with published colorimetric or fluorescent reporters. This property results in shorter assay times and decreased protein concentrations in the assays. Such sensitive assays will facilitate distinguishing the relative potency of powerful inhibitors of FAAH. When these fluorescent substrates were applied to human liver microsomes, results suggested that there was at least one amide hydrolase in addition to FAAH that could hydrolyze long-chain fatty acid amides. These results show that these fluorescent substrates are very valuable tools in FAAH activity assays including screening inhibitors by high-throughput assays instead of using the costly and labor-intensive radioactive ligands. Potential applications of novel fluorescent reporters are discussed.

The article 《Development of highly sensitive fluorescent assays for fatty acid amide hydrolase》 also mentions many details about this compound(1827-27-6)Recommanded Product: 1827-27-6, you can pay attention to it, because details determine success or failure

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Introduction of a new synthetic route about 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Name: 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Zhang, Pei; Jiang, Mei-Yan; Le, Mei-Ling; Zhang, Bei; Zhou, Qian; Wu, Yinuo; Zhang, Chen; Luo, Hai-Bin published an article about the compound: 5-Amino-2-fluoropyridine( cas:1827-27-6,SMILESS:NC1=CN=C(C=C1)F ).Name: 5-Amino-2-fluoropyridine. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1827-27-6) through the article.

Phosphodiesterase-9 (PDE9) is a promising target for the treatment of Alzheimer’s disease (AD). To discover efficient PDE9 inhibitors with good metabolic stability and solubility, a series of novel pyrazolopyrimidinone derivatives were designed with the assistance of mol. docking and dynamics simulations. All the fourteen synthesized compounds gave excellent inhibition ratio against PDE9 at 10 nM. Compound (R)-N-(1H-benzo[d]imidazol-5-yl)-2-((1-cyclopentyl-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]pyrimidin-6-yl)amino)propanamide with the IC50 of 2.0 nM against PDE9, showed good metabolic stability (t1/2 of 57 min) in the RLM as well as good solubility (195 mg/L). The anal. on binding modes of targeted compounds may provide insight for further structural modification.

After consulting a lot of data, we found that this compound(1827-27-6)Name: 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The effect of the change of synthetic route on the product 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Reference of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference of 5-Amino-2-fluoropyridine. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5-Amino-2-fluoropyridine, is researched, Molecular C5H5FN2, CAS is 1827-27-6, about Synthesis, cytotoxic characterization, and SAR study of imidazo[1,2-b]pyrazole-7-carboxamides. Author is Demjen, Andras; Alfoeldi, Robert; Angyal, Aniko; Gyuris, Mario; Hackler, Laszlo Jr.; Szebeni, Gabor J.; Woelfling, Janos; Puskas, Laszlo G.; Kanizsai, Ivan.

The synthesis and in vitro cytotoxic characteristics of new imidazo[1,2-b]pyrazole-7-carboxamides were investigated. Following a hit-to-lead optimization exploiting 2D and 3D cultures of MCF-7 human breast, 4T1 mammary gland, and HL-60 human promyelocytic leukemia cancer cell lines, a 67-membered library was constructed and the structure-activity relationship (SAR) was determined Seven synthesized analogs exhibited sub-micromolar activities, from which compound 63 (2-(tert-Butyl)-N-(4-fluorophenyl)-3-((2,4,4-trimethylpentan-2-yl)amino)-1H-imidazo[1,2-b]pyrazole-7-carboxamide) exerted the most significant potency with a remarkable HL-60 sensitivity (IC50 = 0.183 μM).

After consulting a lot of data, we found that this compound(1827-27-6)Reference of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Chemical Research in 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Name: 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1827-27-6, is researched, Molecular C5H5FN2, about Synthesis of 6-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones via directed lithiation of 2-substituted 5-aminopyridine derivatives, the main research direction is pyridopyrimidinone preparation; pyrimidinone pyrido preparation; aminopyridine lithiation carboxylation.Name: 5-Amino-2-fluoropyridine.

Directed lithiation of Boc or pivaloyl derivatives of 2-substituted 5-aminopyridines I (R = Cl, F, OMe, R1 = COnCMe3, X = H, n = 1, 2) with BuLi-TMEDA in di-Et ether at -10°C gave 4-lithio derivatives which were quenched with CO2 to give the analogous C-4 carboxylic acids I (X = CO2H). Hydrolysis of the protecting groups with either TFA or aqueous KOH gave 2-substituted 5-aminopyridine-4-carboxylic acids I (R1 = H, X = CO2H) which were converted to 6-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones II by reaction with formamide or, more optionally, formamidine acetate. Boc protected aminopyridines provided the best overall results, with synthesis of these derivatives best achieved by direct reaction of the aminopyridine with di-tert-Bu dicarbonate in the absence of added base.

After consulting a lot of data, we found that this compound(1827-27-6)Name: 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Research on new synthetic routes about 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Synthetic Route of C5H5FN2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Synthetic Route of C5H5FN2. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5-Amino-2-fluoropyridine, is researched, Molecular C5H5FN2, CAS is 1827-27-6, about 2-Aminoadipic Acid-C(O)-Glutamate Based Prostate-Specific Membrane Antigen Ligands for Potential Use as Theranostics. Author is Nakajima, Ryo; Novakova, Zora; Tueckmantel, Werner; Motlova, Lucia; Barinka, Cyril; Kozikowski, Alan P..

The design and synthesis of prostate specific membrane antigen (PSMA) ligands derived from 2-aminoadipic acid, a building block that has not previously been used to construct PSMA ligands, are reported. The effects of both the linker length and of an N-substituent of our PSMA ligands were probed, and X-ray structures of five of these ligands bound to PSMA were obtained. Among the ligands disclosed herein, I showed the highest inhibitory activity for PSMA. As ligand I can readily be radiolabeled since its fluorine atom is adjacent to the nitrogen atom of its pyridine ring, the use of this and related compounds as theranostics can be pursued.

After consulting a lot of data, we found that this compound(1827-27-6)Synthetic Route of C5H5FN2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The important role of 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Safety of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Kimura, Hiroyuki; Okuda, Haruka; Ishiguro, Masumi; Arimitsu, Kenji; Makino, Akira; Nishii, Ryuichi; Miyazaki, Anna; Yagi, Yusuke; Watanabe, Hiroyuki; Kawasaki, Ikuo; Ono, Masahiro; Saji, Hideo published an article about the compound: 5-Amino-2-fluoropyridine( cas:1827-27-6,SMILESS:NC1=CN=C(C=C1)F ).Safety of 5-Amino-2-fluoropyridine. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1827-27-6) through the article.

In non-small-cell lung carcinoma patients, L858R mutation of epidermal growth factor receptor (EGFR) are often found and mol. target therapy using EGFR tyrosine kinase inhibitors is effective for the patients. However, the treatment frequently develops drug resistance by secondary mutation, of which approx. 50% is a T790M mutation. Thus, the ability to predict whether EGFR will undergo secondary mutation is extremely important. We synthesized a novel radiofluorinated 4-(anilino)pyrido[3,4-d]pyrimidine derivative ([18F]APP-1) and evaluated its potential as a positron emission tomog. (PET) imaging probe to discriminate different tumor of mutation. EGFR inhibition assay, cell-uptake and biodistribution study showed that [18F]APP-1 binds specifically to the L858R mutant EGFR but not to the L858R/T790M mutant. Finally, PET imaging study using [18F]APP-1 with tumor-bearing mice, the H3255 tumor (L858R mutant) was more clearly visualized than the H1975 tumor (L858R/T790M mutant).

After consulting a lot of data, we found that this compound(1827-27-6)Safety of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Why Are Children Getting Addicted To 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Application In Synthesis of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Application In Synthesis of 5-Amino-2-fluoropyridine. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5-Amino-2-fluoropyridine, is researched, Molecular C5H5FN2, CAS is 1827-27-6, about Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Author is Zhao, Xian; Feng, Xiaoliang; Chen, Fan; Zhu, Shengqing; Qing, Feng-Ling; Chu, Lingling.

A metallaphotoredox-catalyzed strategy for the selective and divergent aminocarbonylation of alkynes with amines and 1 atm of CO was reported. This synergistic protocol not only enables the Markovnikov-selective hydroaminocarbonylation of alkynes to afford α,β-unsaturated amides, but also facilitated a sequential four-component hydroaminocarbonylation/radical alkylation in the presence of tertiary and secondary alkyl boronate esters, which allowed for straightforward conversion of alkynes into corresponding amides. Preliminary mechanistic studied disclose that a photoinduced oxidative insertion of aniline and CO into nickel followed by a migratory insertion of (carbamoyl)nickel species was involved.

After consulting a lot of data, we found that this compound(1827-27-6)Application In Synthesis of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Now Is The Time For You To Know The Truth About 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Computed Properties of C5H5FN2 can be used in many types of reactions. And in most cases, this compound has more advantages.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called A Bulky and Electron-Rich N-Heterocyclic Carbene Palladium Complex (SIPr)Ph2Pd(cin)Cl: Highly Efficient and Versatile for Buchwald-Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature, published in 2021-08-06, which mentions a compound: 1827-27-6, Name is 5-Amino-2-fluoropyridine, Molecular C5H5FN2, Computed Properties of C5H5FN2.

A bulky and electron-rich N-heterocyclic carbene palladium complex (SIPr)Ph2Pd(cin)Cl was synthesized and characterized. It was found to be highly efficient and versatile for the synthesis of substituted amines via coupling of different (hetero)aryl chlorides with various (hetero)aryl amines at room temperature, especially for the challenging amination of five- or six-membered ring heteroaryl chlorides with five- or six-membered ring heteroaryl amines. It was also successfully applied to the synthesis of various com. pharmaceuticals and candidate drugs or compounds with potential pharmacol. activities in high yields. All of these demonstrate its excellent catalytic efficacy in Buchwald-Hartwig amination and broad application prospects in relevant pharmaceutical preparations DFT calculations suggest that the steric-induced electronic interaction makes the ligand more electron-donating and the steric effect effectively regulates the rotation of iPr-Ph-iPr group in the catalyzed system due to the introduction of the di-Ph skeleton. Considering the electronic effect and steric effect together, the oxidative addition activation barriers by (SIPr)Ph2 and (SIPr) ligands are close to each other. The reductive elimination was the rate-determining step of (SIPr)Ph2Pd(cin)Cl-catalyzed system in the catalytic cycle, the appropriate steric hindrance of (SIPr)Ph2 ligand greatly reduces the energy barrier of this step. The perfect combination of electron-donating and steric hindrance ability of the ligand significantly improves the catalytic activity.

After consulting a lot of data, we found that this compound(1827-27-6)Computed Properties of C5H5FN2 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Related Products of 1827-27-6 can be used in many types of reactions. And in most cases, this compound has more advantages.

Related Products of 1827-27-6. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-Amino-2-fluoropyridine, is researched, Molecular C5H5FN2, CAS is 1827-27-6, about Utility of MetaSite in improving metabolic stability of the neutral indomethacin amide derivative and selective cyclooxygenase-2 inhibitor 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-phenethyl-acetamide.

Prediction of the metabolic sites for new compounds, synthesized or virtual, is important in the rational design of compounds with increased resistance to metabolism The aim of the present investigation was to use rational design together with MetaSite, an in silico tool for predicting metabolic soft spots, to synthesize compounds that retain their pharmacol. effects but are metabolically more stable in the presence of cytochrome P 450 enzymes. The model compound for these studies was the phenethyl amide (1) derivative of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Unlike the parent NSAID, 1 is a potent and selective cyclooxygenase-2 (COX-2) inhibitor and nonulcerogenic anti-inflammatory agent in the rat. This pharmacol. benefit is offset by the finding that 1 is very unstable in rat and human microsomes because of extensive P 4503 A4/2D6-mediated metabolism on the phenethyl group, exptl. observations that were accurately predicted by MetaSite. The information was used to design analogs with polar (glycinyl) and/or electron-deficient (fluorophenyl, fluoropyridinyl) amide substituents to reduce metabolism in 1. MetaSite correctly predicted the metabolic shift from oxidation on the amide substituent to O-demethylation for these compounds, whereas rat and human microsomal stability studies and pharmacokinetic assessments in the rat confirmed that the design tactics for improving pharmacokinetic attributes of 1 had worked in our favor. In addition, the fluorophenyl and pyridinyl amide derivatives retained the potent and selective COX-2 inhibition demonstrated with 1. Overall, the predictions from MetaSite gave useful information leading to the design of new compounds with improved metabolic properties.

After consulting a lot of data, we found that this compound(1827-27-6)Related Products of 1827-27-6 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Discovery of 1827-27-6

After consulting a lot of data, we found that this compound(1827-27-6)Application In Synthesis of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5-Amino-2-fluoropyridine, is researched, Molecular C5H5FN2, CAS is 1827-27-6, about Amide-containing α-hydroxytropolones as inhibitors of hepatitis B virus replication.Application In Synthesis of 5-Amino-2-fluoropyridine.

The Hepatitis B Virus (HBV) RNase H (RNaseH) is a promising but unexploited drug target. Here, we synthesized and analyzed a library of 57 amide-containing α-hydroxytropolones (αHTs) as potential leads for HBV drug development. Fifty percent effective concentrations ranged from 0.31 to 54μM, with selectivity indexes in cell culture of up to 80. Activity against the HBV RNaseH was confirmed in semi-quant. enzymic assays with recombinant HBV RNaseH. The compounds were overall poorly active against human RNase H1, with 50% inhibitory concentrations of 5.1 to >1,000μM. The aHTs had modest activity against growth of the fungal pathogen Cryptococcus neoformans, but had very limited activity against growth of the Gram – bacterium Escherichia coli and the Gram + bacterium Staphylococcus aureus, indicating substantial selectivity for HBV. A mol. model of the HBV RNaseH templated against the Ty3 RNaseH was generated. Docking the compounds to the RNaseH revealed the anticipated binding pose with the divalent cation coordinating motif on the compounds chelating the two Mn++ ions modeled into the active site. These studies reveal that that amide aHTs can be strong, specific HBV inhibitors that merit further assessment toward becoming anti-HBV drugs.

After consulting a lot of data, we found that this compound(1827-27-6)Application In Synthesis of 5-Amino-2-fluoropyridine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem