New downstream synthetic route of 1458-01-1

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, its application will become more common.

Related Products of 1458-01-1,Some common heterocyclic compound, 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, molecular formula is C6H7ClN4O2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

(1) A mixture of 20 g (99.0 mmol) of methyl 3,5-diamino-6-chloropyrazine-2-carboxylate (see U.S. Pat. No. 4,029,816 for an example of how to obtain this material) and 17 g (230.0 mmol) of N-methylethylenediamine was heated at reflux under an inert atmosphere for 30 hours. The rection mixture was cooled to ambient temperature and the solid was dissolved in 100 ml of tetrahydrofuran. The solution was filtered and evaporated. The residue was crystallized from 2-propanol. There was obtained 15.0 g (61.2 mmol, 61percent) of 3,5-diamino-6-chloro-N-(2-methylaminoethyl)pyrazine-2-carboxamide; mp 142.5°-143° C. Analysis calculated for; C8 H13 ClN6 O: C, 39.27; H, 5.35; N, 34.35; Found: C, 39.28; H, 5.26; N, 34.55.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, its application will become more common.

Reference:
Patent; ICI Americas Inc.; US4910202; (1990); A;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Brief introduction of 1458-01-1

The synthetic route of 1458-01-1 has been constantly updated, and we look forward to future research findings.

Electric Literature of 1458-01-1, These common heterocyclic compound, 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate 2 (1 eq.) was combined with K2CO3 (10 eq.), the appropriate (het)aryl boronic acid (1.5 eq.) and Pd(PPh3)4 (5 mol%) in a two-neck round bottom flask. The flask was connected to a condenser and purged with nitrogen. A 4:1 mixture of anhydrous toluene: MeOH (60 mL) was added via syringe and the reaction mixture was heated at reflux for 0.5-18 h. The mixture was allowed to cool to room temperature and filtered through Celite (10 x 3 cm, eluting with 3 x 20 mL EtOAc). The filtrate was evaporated to dryness and the residue purified by silica gel flash column chromatography using EtOAc/pet spirit.

The synthetic route of 1458-01-1 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Buckley, Benjamin J.; Majed, Hiwa; Aboelela, Ashraf; Minaei, Elahe; Jiang, Longguang; Fildes, Karen; Cheung, Chen-Yi; Johnson, Darren; Bachovchin, Daniel; Cook, Gregory M.; Huang, Mingdong; Ranson, Marie; Kelso, Michael J.; Bioorganic and Medicinal Chemistry Letters; vol. 29; 24; (2019);,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Sources of common compounds: C6H7ClN4O2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 1458-01-1, its application will become more common.

Some common heterocyclic compound, 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, molecular formula is C6H7ClN4O2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. Safety of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate

General procedure: Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate 2 (1 eq.) was combined with K2CO3 (10 eq.), the appropriate (het)aryl boronic acid (1.5 eq.) and Pd(PPh3)4 (5 mol%) in a two-neck round bottom flask. The flask was connected to a condenser and purged with nitrogen. A 4:1 mixture of anhydrous toluene: MeOH (60 mL) was added via syringe and the reaction mixture was heated at reflux for 0.5-18 h. The mixture was allowed to cool to room temperature and filtered through Celite (10 x 3 cm, eluting with 3 x 20 mL EtOAc). The filtrate was evaporated to dryness and the residue purified by silica gel flash column chromatography using EtOAc/pet spirit.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 1458-01-1, its application will become more common.

Reference:
Article; Buckley, Benjamin J.; Majed, Hiwa; Aboelela, Ashraf; Minaei, Elahe; Jiang, Longguang; Fildes, Karen; Cheung, Chen-Yi; Johnson, Darren; Bachovchin, Daniel; Cook, Gregory M.; Huang, Mingdong; Ranson, Marie; Kelso, Michael J.; Bioorganic and Medicinal Chemistry Letters; vol. 29; 24; (2019);,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Some tips on 1458-01-1

The synthetic route of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate has been constantly updated, and we look forward to future research findings.

These common heterocyclic compound, 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. Formula: C6H7ClN4O2

General procedure: Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate 2 (1 eq.) was combined with K2CO3 (10 eq.), the appropriate (het)aryl boronic acid (1.5 eq.) and Pd(PPh3)4 (5 mol%) in a two-neck round bottom flask. The flask was connected to a condenser and purged with nitrogen. A 4:1 mixture of anhydrous toluene: MeOH (60 mL) was added via syringe and the reaction mixture was heated at reflux for 0.5-18 h. The mixture was allowed to cool to room temperature and filtered through Celite (10 x 3 cm, eluting with 3 x 20 mL EtOAc). The filtrate was evaporated to dryness and the residue purified by silica gel flash column chromatography using EtOAc/pet spirit.

The synthetic route of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate has been constantly updated, and we look forward to future research findings.

Reference:
Article; Buckley, Benjamin J.; Majed, Hiwa; Aboelela, Ashraf; Minaei, Elahe; Jiang, Longguang; Fildes, Karen; Cheung, Chen-Yi; Johnson, Darren; Bachovchin, Daniel; Cook, Gregory M.; Huang, Mingdong; Ranson, Marie; Kelso, Michael J.; Bioorganic and Medicinal Chemistry Letters; vol. 29; 24; (2019);,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

A new synthetic route of 1458-01-1

The synthetic route of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate has been constantly updated, and we look forward to future research findings.

Synthetic Route of 1458-01-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate belongs to pyrazines compound, it is a common compound, a new synthetic route is introduced below.

Intermediate A.13,5-Diamino-6-chloropyrazine-2-carboxylic acidA mixture of methyl 3,5-diamino-6-chloropyrazine-2-carboxylate (100 g; 494 mmol), methanol (1 I) and NaOH (6 mol/l in water; 240 ml; 1 .44 mol) is refluxed for 3 h. The mixture is allowed to cool to r.t. and then neutralized by addition of hydrochloric acid (6 mol/l in water; approx. 240 ml_). Water (200 ml) is added. The precipitate formed is filtered off with suction, washed with water and dried at 60°C.C5H5CIN402 ESI Mass spectrum: m/z = 189 [M+H]+; m/z = 187 [M-H]-

The synthetic route of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; KLEY, Joerg; FRATTINI, Sara; HAMPRECHT, Dieter; HECKEL, Armin; WO2015/7516; (2015); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Analyzing the synthesis route of 1458-01-1

The synthetic route of 1458-01-1 has been constantly updated, and we look forward to future research findings.

Application of 1458-01-1, These common heterocyclic compound, 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

A stirred suspension of S^-diamino-?-chloro-pyrazine^-carboxylic acid methyl ester (1 10 g, 542.9 mmol) in MeOH (500 ml.) at 5-100C (ice-bath) is treated dropwise with a suspension of lithium hydroxide (46.6 g, 11 11 mmol) in water (500 ml_). The reaction mixture is heated to 500C for 5 hours then cooled to room temperature and stirred overnight. The resulting precipitate is collected by filtration and dried in a vacuum oven to afford the title compound as the lithium salt (di-hydrate). [M-Li]” 187

The synthetic route of 1458-01-1 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; NOVARTIS AG; WO2008/135557; (2008); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Continuously updated synthesis method about Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate

The synthetic route of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate has been constantly updated, and we look forward to future research findings.

Reference of 1458-01-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate belongs to pyrazines compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate 2 (1 eq.) was combined with K2CO3 (10 eq.), the appropriate (het)aryl boronic acid (1.5 eq.) and Pd(PPh3)4 (5 mol%) in a two-neck round bottom flask. The flask was connected to a condenser and purged with nitrogen. A 4:1 mixture of anhydrous toluene: MeOH (60 mL) was added via syringe and the reaction mixture was heated at reflux for 0.5-18 h. The mixture was allowed to cool to room temperature and filtered through Celite (10 x 3 cm, eluting with 3 x 20 mL EtOAc). The filtrate was evaporated to dryness and the residue purified by silica gel flash column chromatography using EtOAc/pet spirit.

The synthetic route of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate has been constantly updated, and we look forward to future research findings.

Reference:
Article; Buckley, Benjamin J.; Majed, Hiwa; Aboelela, Ashraf; Minaei, Elahe; Jiang, Longguang; Fildes, Karen; Cheung, Chen-Yi; Johnson, Darren; Bachovchin, Daniel; Cook, Gregory M.; Huang, Mingdong; Ranson, Marie; Kelso, Michael J.; Bioorganic and Medicinal Chemistry Letters; vol. 29; 24; (2019);,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Discovery of 1458-01-1

According to the analysis of related databases, 1458-01-1, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 1458-01-1 as follows. Application In Synthesis of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate

3,5-Diamino-6-chloropyrazine-2-carboxylic acid A mixture of methyl 3,5-diamino-6-chloropyrazine-2-carboxylate (100 g; 494 mmol), methanol (1 l) and NaOH (6 mol/l in water; 240 mL; 1.44 mol) is refluxed for 3 h. The mixture is allowed to cool to r.t. and then neutralized by addition of hydrochloric acid (6 mol/l in water; approx. 240 mL). Water (200 mL) is added. The precipitate formed is filtered off with suction, washed with water and dried at 60° C. Yield: 99.6 g (107percent of theory) C5H5ClN4O2 ESI Mass spectrum: m/z=189 [M+H]+; m/z=187 [M-H]-

According to the analysis of related databases, 1458-01-1, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Boehringer Ingelheim International GmbH; HECKEL, Armin; Frattini, Sara; Hamprecht, Dieter; Kley, Joerg; US2013/109697; (2013); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Simple exploration of 1458-01-1

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, other downstream synthetic routes, hurry up and to see.

Application of 1458-01-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate belongs to pyrazines compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate 2 (1 eq.) was combined with K2CO3 (10 eq.), the appropriate (het)aryl boronic acid (1.5 eq.) and Pd(PPh3)4 (5 mol%) in a two-neck round bottom flask. The flask was connected to a condenser and purged with nitrogen. A 4:1 mixture of anhydrous toluene: MeOH (60 mL) was added via syringe and the reaction mixture was heated at reflux for 0.5-18 h. The mixture was allowed to cool to room temperature and filtered through Celite (10 x 3 cm, eluting with 3 x 20 mL EtOAc). The filtrate was evaporated to dryness and the residue purified by silica gel flash column chromatography using EtOAc/pet spirit.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, other downstream synthetic routes, hurry up and to see.

Reference:
Article; Buckley, Benjamin J.; Majed, Hiwa; Aboelela, Ashraf; Minaei, Elahe; Jiang, Longguang; Fildes, Karen; Cheung, Chen-Yi; Johnson, Darren; Bachovchin, Daniel; Cook, Gregory M.; Huang, Mingdong; Ranson, Marie; Kelso, Michael J.; Bioorganic and Medicinal Chemistry Letters; vol. 29; 24; (2019);,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The important role of 1458-01-1

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 1458-01-1, name is Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate, A new synthetic method of this compound is introduced below., Recommanded Product: Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate

The guanidine base was dissolved in anhydrousmethanol (2?3 mL/mmol) with methyl 3,5-diamino-6-chloropyrazine-2-carboxylate (1 eq.) and refluxed for2 h under N2 atmosphere. The mixture was cooled toroom temperature, concentrated under reduced pressure,and purified by silica-gel column chromatography(Wako gel® C-200, 10percent methanol/chloroform) toafford series 3 (yield: 23?28percent). The spectral data of3a?3c were listed in the Supporting Information.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Article; Murai, Masatoshi; Habu, Sayako; Murakami, Sonomi; Ito, Takeshi; Miyoshi, Hideto; Bioscience, Biotechnology and Biochemistry; vol. 79; 7; (2015); p. 1061 – 1066;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem