Cheng, Xian-Chao et al. published their research in Bioorganic & Medicinal Chemistry in 2007 | CAS: 75907-74-3

(3,5,6-Trimethylpyrazin-2-yl)methanol (cas: 75907-74-3) belongs to pyrazine derivatives. Pyrazine heterocycles and their benzo derivatives possess many interesting properties, including chemical reactivity profiles, and have diverse applications in total synthesis, medicine, chemical biology, materials, dyes, and imaging. Pyrazine-based skeletons were incorporated into agents targeting a range of ailments. Many derivatives were synthesized and evaluated as potential cancer treatments.Computed Properties of C8H12N2O

Design, synthesis, and biological activities of novel Ligustrazine derivatives was written by Cheng, Xian-Chao;Liu, Xin-Yong;Xu, Wen-Fang;Guo, Xiu-Li;Ou, Yang. And the article was included in Bioorganic & Medicinal Chemistry in 2007.Computed Properties of C8H12N2O This article mentions the following:

A series of novel Ligustrazine derivatives was designed, synthesized, and assayed for their protective effects on damaged ECV-304 cells and antiplatelet aggregation activities. The results showed that most Ligustrazine derivatives exhibited lower EC50 values for protective effects on the ECV-304 cells damaged by hydrogen peroxide in comparison with Ligustrazine. And some Ligustrazine derivatives presented better antiplatelet aggregation activities than Ligustrazine. The derivatives containing the bisphenylmethyl pharmacophore (7a-c) exhibited highest potency. Compound 7a displayed most potential protective effects on the ECV-304 cells damaged by hydrogen peroxide, and compound 7c was found to be the most active antiplatelet aggregation agent. Structure-activity relationships were briefly discussed. In the experiment, the researchers used many compounds, for example, (3,5,6-Trimethylpyrazin-2-yl)methanol (cas: 75907-74-3Computed Properties of C8H12N2O).

(3,5,6-Trimethylpyrazin-2-yl)methanol (cas: 75907-74-3) belongs to pyrazine derivatives. Pyrazine heterocycles and their benzo derivatives possess many interesting properties, including chemical reactivity profiles, and have diverse applications in total synthesis, medicine, chemical biology, materials, dyes, and imaging. Pyrazine-based skeletons were incorporated into agents targeting a range of ailments. Many derivatives were synthesized and evaluated as potential cancer treatments.Computed Properties of C8H12N2O

Referemce:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem