DiCarmine, Paul M. et al. published their research in Journal of Physical Chemistry C in 2014 | CAS: 148231-12-3

5,8-Dibromoquinoxaline (cas: 148231-12-3) belongs to pyrazine derivatives. Pyrazine is a symmetrical molecule with point group D2h. Pyrazine is less basic than pyridine, pyridazine and pyrimidine. Pyrazine heterocycles and their benzo derivatives possess many interesting properties, including chemical reactivity profiles, and have diverse applications in total synthesis, medicine, chemical biology, materials, dyes, and imaging.Application of 148231-12-3

Donor-Acceptor Polymers for Electrochemical Supercapacitors: Synthesis, Testing, and Theory was written by DiCarmine, Paul M.;Schon, Tyler B.;McCormick, Theresa M.;Klein, Philipp P.;Seferos, Dwight S.. And the article was included in Journal of Physical Chemistry C in 2014.Application of 148231-12-3 This article mentions the following:

Donor-acceptor polymers can store both a pos. and neg. charge allowing them to function as both the pos. and neg. charge storage material in a supercapacitor device, however few were explored for this application. Here, the synthesis is described of several donor-acceptor polymers and their electrodeposited polymer electrodes. Differing mol. structures are used to examine the effect of electron acceptor concentration and show that device stability can be improved significantly by increasing the acceptor concentration Further, the computational insight is provided into the important chem. requirements for achieving even higher performance supercapacitors based on donor-acceptor conjugated polymers. Supercapacitor devices with specific energy and specific power as high as 11 Wh kg-1 (at 0.5 A g-1) and 20 kW kg-1 (at 50 A g-1 with an energy of 3.6 Wh kg-1) are reported, which are some of the highest values achieved to date. In the experiment, the researchers used many compounds, for example, 5,8-Dibromoquinoxaline (cas: 148231-12-3Application of 148231-12-3).

5,8-Dibromoquinoxaline (cas: 148231-12-3) belongs to pyrazine derivatives. Pyrazine is a symmetrical molecule with point group D2h. Pyrazine is less basic than pyridine, pyridazine and pyrimidine. Pyrazine heterocycles and their benzo derivatives possess many interesting properties, including chemical reactivity profiles, and have diverse applications in total synthesis, medicine, chemical biology, materials, dyes, and imaging.Application of 148231-12-3

Referemce:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem