Futamura, Akika et al. published their research in Chemistry – A European Journal in 2013 | CAS: 1458-01-1

Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate (cas: 1458-01-1) belongs to pyrazine derivatives. Pyrazines are part of several biologically active polycyclic compounds; examples are quinoxalines, phenazines; and the bio-luminescent natural products pteridines, flavins, and their derivatives. Pyrazines are chemical compounds (technically called “methoxypyrazines”) found in grape skin and stems that are responsible for many “green” flavors in wine. Levels of pyrazines are dependent on viticultural practices, climate, and grape variety.Application In Synthesis of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate

Rational design for cooperative recognition of specific nucleobases using β-cyclodextrin-modified DNAs and fluorescent ligands on DNA and RNA scaffolds was written by Futamura, Akika;Uemura, Asuka;Imoto, Takeshi;Kitamura, Yusuke;Matsuura, Hirotaka;Wang, Chun-Xia;Ichihashi, Toshiki;Sato, Yusuke;Teramae, Norio;Nishizawa, Seiichi;Ihara, Toshihiro. And the article was included in Chemistry – A European Journal in 2013.Application In Synthesis of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate This article mentions the following:

The authors propose a binary fluorimetric method for DNA and RNA anal. by the combined use of two probes rationally designed to work cooperatively. One probe is an oligonucleotide (ODN) conjugate bearing a β-cyclodextrin (β-CyD). The other probe is a small reporter ligand, which comprises linked mols. of a nucleobase-specific heterocycle and an environment-sensitive fluorophore. The heterocycle of the reporter ligand recognizes a single nucleobase displayed in a gap on the target labeled with the conjugate and, at the same time, the fluorophore moiety forms a luminous inclusion complex with nearby β-CyD. Three reporter ligands, MNDS (naphthyridine-dansyl linked ligand), MNDB (naphthyridine-DBD), and DPDB (pyridine-DBD), were used for DNA and RNA probing with 3′-end or 5′-end modified β-CyD-ODN conjugates. For the DNA target, the β-CyD tethered to the 3′-end of the ODN facing into the gap interacted with the fluorophore sticking out into the major groove of the gap site (MNDS and DPDB). Meanwhile the β-CyD on the 5′-end of the ODN interacted with the fluorophore in the minor groove (MNDB and DPDB). The results obtained by this study could be a guideline for the design of binary DNA/RNA probe systems based on controlling the proximity of functional mols. In the experiment, the researchers used many compounds, for example, Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate (cas: 1458-01-1Application In Synthesis of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate).

Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate (cas: 1458-01-1) belongs to pyrazine derivatives. Pyrazines are part of several biologically active polycyclic compounds; examples are quinoxalines, phenazines; and the bio-luminescent natural products pteridines, flavins, and their derivatives. Pyrazines are chemical compounds (technically called “methoxypyrazines”) found in grape skin and stems that are responsible for many “green” flavors in wine. Levels of pyrazines are dependent on viticultural practices, climate, and grape variety.Application In Synthesis of Methyl 3,5-diamino-6-chloropyrazine-2-carboxylate

Referemce:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem