In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Detoxication of cyanide by cystine, published in 1956, which mentions a compound: 2150-55-2, Name is 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, Molecular C4H6N2O2S, Synthetic Route of C4H6N2O2S.
cf. C.A. 46, 5633a. Chem. studies on the nature of the reaction product between cystine and cyanide support formulation of the structure as 2-imino-4-thiazolidinecarboxylic acid (I). I was inert metabolically when fed to the rat or injected. I with acid yielded a small amount of thiocyanate. I was isolated from the urine of rats given NaCN subcutaneously; 80% of the cyanide was accounted for as thiocyanate. When L-cystine-S35 was administered 1st, the compounds excreted were labeled. Radioactivity measurements showed that I came from cystine, while the thiocyanate was formed from other sources of S. The reaction with cystine constitutes an independent pathway for detoxification of cyanide. The method of Schöberl and Hamm (C.A. 43, 1014f) yielded 66% I, m. 212°, [α]D29 -2.18° (c 1, water). I with Raney Ni yielded alanine. I with Ac2O in alk. aqueous solution yielded the 3-Ac compound (II), m. 179-80°, [α]D29 -1.52° (c 1, water). I (5 g.) in EtOH saturated with dry HCl and allowed to stand 24 hrs. yielded 5 g. Et ester-HCl, m. 115-16°. The Et ester of II, m. 136°.
As far as I know, this compound(2150-55-2)Synthetic Route of C4H6N2O2S can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.