The origin of a common compound about 1827-27-6

Compound(1827-27-6)Synthetic Route of C5H5FN2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5-Amino-2-fluoropyridine), if you are interested, you can check out my other related articles.

Synthetic Route of C5H5FN2. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5-Amino-2-fluoropyridine, is researched, Molecular C5H5FN2, CAS is 1827-27-6, about Soluble-type small-molecule CD4 mimics as HIV entry inhibitors. Author is Kobayakawa, Takuya; Konno, Kiju; Ohashi, Nami; Takahashi, Kohei; Masuda, Ami; Yoshimura, Kazuhisa; Harada, Shigeyoshi; Tamamura, Hirokazu.

Several small mol. CD4 mimics have been reported previously as HIV-1 entry inhibitors, which block the interaction between the Phe43 cavity of HIV-1 gp120 and the host CD4. Known CD4 mimics such as NBD-556 possess significant anti-HIV activity but are less soluble in water, perhaps due to their hydrophobic aromatic ring-containing structures. Compounds with a pyridinyl group in place of the Ph group in these mols. have been designed and synthesized in an attempt to increase the hydrophilicity. Some of these new CD4 mimics, containing a tetramethylpiperidine ring show significantly higher water solubility than NBD-556 and have high anti-HIV activity and synergistic anti-HIV activity with a neutralizing antibody. The CD4 mimic that has a cyclohexylpiperidine ring and a 6-fluoropyridin-3-yl ring has high anti-HIV activity and no significant cytotoxicity. The present results will be useful in the future design and development of novel soluble-type mol. CD4 mimics.

Compound(1827-27-6)Synthetic Route of C5H5FN2 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(5-Amino-2-fluoropyridine), if you are interested, you can check out my other related articles.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem