Downstream Synthetic Route Of 591-54-8

When you point to this article, it is believed that you are also very interested in this compound(591-54-8)Quality Control of 4-Aminopyrimidine and due to space limitations, I can only present the most important information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 4-Aminopyrimidine, is researched, Molecular C4H5N3, CAS is 591-54-8, about Discovery of Potent, Selective, and State-Dependent NaV1.7 Inhibitors with Robust Oral Efficacy in Pain Models: Structure-Activity Relationship and Optimization of Chroman and Indane Aryl Sulfonamides, the main research direction is structure preparation oral chroman indane sulfonamide pain sodium channel.Quality Control of 4-Aminopyrimidine.

Voltage-gated sodium channel NaV1.7 is a genetically validated target for pain. Identification of NaV1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure-activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and state-dependent NaV1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead mols. with significant improvement in solubility, selectivity over NaV1.5, and CYP2C9 inhibition. The lead mols. 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.

When you point to this article, it is believed that you are also very interested in this compound(591-54-8)Quality Control of 4-Aminopyrimidine and due to space limitations, I can only present the most important information.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem