A new synthetic route of 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Category: pyrazines, illustrating the importance and wide applicability of this compound(2150-55-2).

Category: pyrazines. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about The stability of L-ATC hydrolase participating in L-cysteine production.

In the production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC), the stability of the relevant enzymes produced by Pseudomonas sp. was tested, and strategies to improve the stability of L-ATC hydrolase were investigated with respect to water activity and ionic strength. Among the 3 enzymes which participate in L-cysteine production, i.e., ATC racemase, L-ATC hydrolase, and S-carbamyl-L-cysteine hydrolase, L-ATC hydrolase is the least stable. Various mixtures of salts and sorbitol were added to adjust the water activities of the tested solutions As the water activity decreased from 0.93 to 0.80, the stability of L-ATC hydrolase was sharply enhanced. In the absence of sorbitol, the stability of L-ATC hydrolase increased in proportion to ionic strength. Even though enzyme stability was not good at a low ionic strength, it was enhanced by lowering the water activity with the addition of sorbitol. The half-life of L-ATC hydrolase in sorbitol-salt mixtures increased by 10- to 20-fold compared to that of a control.

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Category: pyrazines, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem