Continuously updated synthesis method about 2-Bromo-5-iodopyrazine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Bromo-5-iodopyrazine, its application will become more common.

Application of 622392-04-5,Some common heterocyclic compound, 622392-04-5, name is 2-Bromo-5-iodopyrazine, molecular formula is C4H2BrIN2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

2-bromo-5-iodopyrazine (503 mg, 1.77 mmol) and tert-butyl piperazine-1-carboxylate (355 mg, 1.91 mmol) were taken up in tBuOH (8 mL). iPr2NEt (400 muL, 2.3 mmol) was added and the stirred reaction mixture was heated to 100 C. After 66 h, the reaction mixture was cooled and was partitioned between EtOAc, water and brine. The phases were separated, and the organic phase was dried over Na2SO4, filtered, and concentrated. The crude residue was purified by silica gel chromatography (10-30% EtOAc in hexanes) to afford tert-butyl 4-(5-iodopyrazin-2-yl)piperazine-1-carboxylate 7.11.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Bromo-5-iodopyrazine, its application will become more common.

Reference:
Patent; Gilead Scientific Systems, Inc.; Cory, Kevin S; Doo, Jimin; Farrand, Julie; Guerrero, Juan A; Katana, Ashley A; Cato, Daryl; Laisaweed, Scott I; Lee, Jiayao; Lingco, John O; Nicolaus, May; Notte, Gregory; Phyen, Hyeoung-Jung; Sangy, Michael; Sumit, Arun C; Adam J, Surayyah; Stephens, Cork L; Venkatraman, Chandrasekar; Watkins, William J; Yang, Jong Yu; Jabloki, Jeff; Jifel, Shiela; Ro, Jennifer; Lee, Sung H; Jao, Chung Dong; Grove, Jeffery; Su, Jianjun; Blomgren, Peter; Mitchell, Scott A; Shyung, Jin Ming; Chandrasekar, Jayaraman; (460 pag.)KR2016/37198; (2016); A;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem