Simple exploration of Methyl 3-methylpyrazine-2-carboxylate

According to the analysis of related databases, 41110-29-6, the application of this compound in the production field has become more and more popular.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 41110-29-6, name is Methyl 3-methylpyrazine-2-carboxylate, This compound has unique chemical properties. The synthetic route is as follows., HPLC of Formula: C7H8N2O2

In a 1 -L flask, the methyl 3-methylpyrazine-2- carboxylate (265A, 16.08 g, 106 mmol) was suspended in CHCl3 (300 mL). 3- Chlorobenzoperoxoic acid (Aldrich, 24.62 g, 143 mmol) was added. The reaction mixture was heated to 70 C for 16 h. The reaction mixture was quenched with saturated NaHCO3 (200 mL). The layers were separated, and the aqueous layer was further extracted with DCM (2 x 100 mL). The combined organic layers were dried over MgSO4, and the filtrate was concentrated to afford crude 3-(methoxycarbonyl)-2-methylpyrazine 1 -oxide (17.77 g). MS m/z=169 [M+H]+. In a 1 -L flask, the crude 3-(methoxycarbonyl)-2-methylpyrazine 1 -oxide (17.77 g, 106 mmol) was dissolved in DMF (300 mL). Neat phosphoryl trichloride (29.6 mL, 317 mmol) was added. The reaction mixture was heated to 100 C. After 1 h, the reaction mixture was concentrated to remove most of the DMF. The flask was cooled in an ice water bath, and 1 M aqueous Na2CO3 (300 mL) was added slowly, followed by 80% EtOAc-hexane (400 mL). The mixture was filtered through Celite filter aid. The resulting filtrate was partitioned and the aqueous phase was extracted further with 80% EtOAc-hexane (2 x 250 mL). The combined organic layers were dried over MgSO4 and concentrated. The material was purified through silica gel using 11 % EtOAc-hexane to afford methyl 5-chloro-3-methylpyrazine-2-carboxylate (265B, 4.29 g, 23 mmol, 22%). MS m/z=187 [M+H]+.

According to the analysis of related databases, 41110-29-6, the application of this compound in the production field has become more and more popular.

Reference:
Patent; AMGEN INC.; ALLEN, Jennifer R.; AMEGADZIE, Albert; BOURBEAU, Matthew P.; BROWN, James A.; CHEN, Jian J.; CHENG, Yuan; FROHN, Michael J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul E.; LIU, Longbin; LIU, Qingyian; LOW, Jonathan D.; MA, Vu Van; MANNING, James; MINATTI, Ana Elena; NGUYEN, Thomas T.; NISHMURA, Nobuko; NORMAN, Mark H.; PETTUS, Liping H.; PICKRELL, Alexander J.; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert M.; SIEGMUND, Aaron C.; STEC, Markian M.; WHITE, Ryan; XUE, Qiufen; (759 pag.)WO2016/22724; (2016); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem