A new synthetic route of 109838-85-9

According to the analysis of related databases, 109838-85-9, the application of this compound in the production field has become more and more popular.

Related Products of 109838-85-9, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 109838-85-9 as follows.

Step A – Synthesis of Intermediate Compound Int-23c (0372) A 5 L- 3 necked round bottomed flask, equipped with a mechanical stirrer, temperature probe, addition funnel and N2 inlet, was charged with the Schollkopf chiral auxiliary-(Int-23a, 200 g, 1.09 mol, 1.0 eq), bis(chloromethyl) dimethylsilane (Int-23b, 256 g, 1.63 mol, 1.5 eq), and THF (2 L, Aldrich anhydrous). The flask was cooled in a dry ice/ 2-propanol bath until the internal temperature reached -75 ¡ãC. n-Butyl lithium (Aldrich 2.5 M in hexanes , 478 mL, 1.19 mol, 1.09 eq) was added via a dropping funnel over 1 hour while maintaining the internal reaction temperature between -67 ¡ãC and -76 ¡ãC. The resulting orange-red solution was allowed to gradually warm to room temperature for about 15 hours. The reaction mixture was then recooled to 0 ¡ãC and quenched with 500 mL of water. Diethyl ether (2L) was added and the layers were separated. The aqueous layer was extracted with 1 L of diethyl ether. The combined organic layers was washed with water and brine, dried with MgSO4, filtered, and concentrated in vacuo to provide 480 g of an orange oil. This material was left under vacuum for about 15 hours to provide 420 g of oil (mixture of Int-23c and Int-23c’). The crude product was split into two batches and purified via silica gel chromatography on a 1.6 Kg flash column. The column was eluted with gradient of 0-4percent Et2O in hexanes. The product fractions were concentrated in vacuo at a bath temperature at or below 40 ¡ãC to provide 190 grams of Compound Int-25c-(60percent yield).

According to the analysis of related databases, 109838-85-9, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Merck Sharp & Dohme Corp.; Nair, Anilkumar Gopinadhan; Keertikar, Kerry M.; Kim, Seong Heon; Kozlowski, Joseph A.; Rosenblum, Stuart; Selyutin, Oleg B.; Wong, Michael; Yu, Wensheng; Zeng, Qingbei; EP2545060; (2015); B1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem