Toci, Aline T.’s team published research in Food Research International in 2020-11-30 | CAS: 14667-55-1

Food Research International published new progress about Roasting (coffee blend). 14667-55-1 belongs to class pyrazines, name is 2,3,5-Trimethylpyrazine, and the molecular formula is C7H10N2, Formula: C7H10N2.

Toci, Aline T. published the artcileEffect of roasting speed on the volatile composition of coffees with different cup quality, Formula: C7H10N2, the main research area is coffee roasting speed cup quality volatile composition; Coffee aroma; Coffee quality; Fluidized bed roaster; Phenols; Pyrazines; Roast profile; Roasting speed; Volatile compounds.

This study investigated the volatile composition of coffee blends of different cup quality, roasted in an industrial-scale semi-fluidized bed roaster (SFBR) and in a lab-scale fluidized bed roaster (FBR), at three roasting speeds/profiles, to reach medium roast degree. Thirty volatile compounds were selectively investigated. Roasting the specialty coffee blend in both roasters produced lower concentrations of total volatile compounds, compared to the low cup quality blends. Higher concentrations of pyrazines and phenols were observed in low cup quality blends. In SFBR, quality and roasting speed affected all groups of compounds, including impact compounds such as 2,5-dimethylpyrazine, 2-ethylpyrazine, 2,3-dimethylpyrazine, 2-methoxyphenol and 4-ethyl-2-methoxyphenol. In FBR, only phenols were affected. The present results help explain why different roast profiles should be used for coffees with different cup quality for better sensory outcome and why blending should be performed after roasting of green seeds. They also show that results obtained in lab scale roasters are not necessarily reproduced in industry under the same settings.

Food Research International published new progress about Roasting (coffee blend). 14667-55-1 belongs to class pyrazines, name is 2,3,5-Trimethylpyrazine, and the molecular formula is C7H10N2, Formula: C7H10N2.

Referemce:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem