Parasuraman, Paramanantham; Devadatha, B.; Sarma, V. Venkateswara; Ranganathan, Sampathkumar; Ampasala, Dinakara Rao; Reddy, Dhanasekhar; Kumavath, Ranjith; Kim, In-Won; Patel, Sanjay K. S.; Kalia, Vipin Chandra; Lee, Jung-Kul; Siddhardha, Busi published the artcile< Inhibition of microbial quorum sensing mediated virulence factors by Pestalotiopsis sydowiana>, Formula: C11H18N2O2, the main research area is sequence Pestalotiopsis extract virulence factor quorum sensing inhibitor antipathogenic; Pestalotiopsis sydowiana; Pseudomonas aeruginosa; anti-biofilm; anti-quorum sensing; gene expression; in silico.
Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The min. inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 μg/mL. Sub-MIC concentrations (250 and 500 μg/mL) of fungal extract reduced QSregulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, resp. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico anal. revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their resp. natural signaling mols. Cyclo(- Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 μg/mL, resp. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 μg/mL) and 4-HPA (62.5 μg/mL), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.
Journal of Microbiology and Biotechnology published new progress about Antibacterial agents. 2873-36-1 belongs to class pyrazines, and the molecular formula is C11H18N2O2, Formula: C11H18N2O2.