Extracurricular laboratory: Synthetic route of 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)COA of Formula: C4H6N2O2S, illustrating the importance and wide applicability of this compound(2150-55-2).

COA of Formula: C4H6N2O2S. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about 2-Iminothiazolidine-4-carboxylic acid produces hippocampal CA1 lesions independent of seizure excitation and glutamate receptor activation. Author is Bitner, R. S.; Yim, G. K. W.; Isom, G. E..

In this study, the ability of either 2-iminothiazolidine-4-carboxylic acid (2-ICA), glutamate, proline or NMDA (N-methyl-D-aspartate) injected i.c.v. to produce hippocampal lesions sensitive to glutamate antagonists was compared in mice. Hippocampal CA1 damage was observed 5-days following either a seizure (3.2 μmol) or subseizure (1.0 μmol) dose of 2-ICA. Glutamate (3.2 μmol) or proline (10 μmol) also produced hippocampal damage; glutamate damage was primarily to the CA1 subfield, whereas proline damaged neurons throughout the entire hippocampal formation. NMDA (3.2 nmol) caused seizure activity in all animals with a 50% lethality. No hippocampal damage was observed in surviving mice. Neither MK-801 (dizocilpine maleate) nor CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) pretreatment prevented hippocampal lesions produced by 2-ICA. In contrast, MK-801 significantly reduced the frequency of mice displaying glutamate hippocampal lesions, but failed to block seizures produced by glutamate. MK-801 also protected neurons in the CA2-3 zone and the dentate gyrus, but not in the CA1 region of proline-injected mice. Finally, pretreatment with the mixed metabotropic glutamate receptor (mGluR)1/mGluR2 antagonist-agonist (S)-4-carboxy-3-hydroxyphenylglycine (CHPG) prevented hippocampal damage produced by the mGluR 1 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), but did not protect against 2-ICA hippocampal lesions. These results show that 2-ICA hippocampal CA1 damage is not mediated through ionotropic or metabotropic glutamate receptors. 2-ICA hippocampal damage may represent a neurotoxicity that is distinct from excitotoxic-mediated cell death.

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)COA of Formula: C4H6N2O2S, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Awesome Chemistry Experiments For 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, illustrating the importance and wide applicability of this compound(2150-55-2).

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Weuffen, W.; Jess, G.; Juelich, W. D.; Bernhardt, D. researched the compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid( cas:2150-55-2 ).Product Details of 2150-55-2.They published the article 《Studies on the relation between 2-iminothiazolidine-4-carboxylic acid and the thiocyanate metabolism in the guinea pig》 about this compound( cas:2150-55-2 ) in Pharmazie. Keywords: iminothiazolidine carboxylate metabolism; thiocyanate iminothiazolidine carboxylate metabolite. We’ll tell you more about this compound (cas:2150-55-2).

In vitro and in vivo experiments have been carried out to elucidate the metabolism of 2-iminothiazolidine-4-carboxylic acid (I) [2150-55-2]. By using I-35S, the formation. of 35SCN as well as of 35S-containing I metabolites could be excluded. As compared to the findings from control animals, the serum SCN levels determined in guinea pigs after oral administration of I were unchanged.

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Derivation of elementary reaction about 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, illustrating the importance and wide applicability of this compound(2150-55-2).

Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Genes from Pseudomonas sp. strain BS involved in the conversion of L-2-amino-Δ2-thiazolin-4-carbonic acid to L-cysteine. Author is Shiba, Toshikazu; Takeda, Kohji; Yajima, Misako; Tadano, Makoto.

DL-2-Amino-Δ2-thiazoline-4-carbonic acid (DL-ATC) is a substrate for cysteine synthesis in some bacteria, and this bioconversion has been utilized for cysteine production in industry. We cloned a DNA fragment containing the genes involved in the conversion of L-ATC to L-cysteine from Pseudomonas sp. strain BS. The introduction of this DNA fragment into Escherichia coli cells enabled them to convert L-ATC to cysteine via N-carbamoyl-L-cysteine (L-NCC) as an intermediate. The smallest recombinant plasmid, designated pTK10, contained a 2.6-kb insert DNA fragment that has L-cysteine synthetic activity. The nucleotide sequence of the insert DNA revealed that two open reading frames (ORFs) encoding proteins with mol. masses of 19.5 and 44.7 kDa were involved in the L-cysteine synthesis from DL-ATC. These ORFs were designated atcB and atcC, resp., and their gene products were identified by overproduction of proteins encoded in each ORF and by the maxicell method. The functions of these gene products were examined using extracts of E. coli cells carrying deletion derivatives of pTK10. The results indicate that atcB and atcC are involved in the conversion of L-ATC to L-NCC and the conversion of L-NCC to cysteine, resp. AtcB was first identified as a gene encoding an enzyme that catalyzes thiazoline ring opening. AtcC is highly homologous with L-N-carbamoylases. Since both enzymes can only catalyze the L-specific conversion from L-ATC to L-NCC or L-NCC to L-cysteine, it is thought that atcB and atcC encode L-ATC hydrolase and N-carbamoyl-L-cysteine amidohydrolase, resp.

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Application In Synthesis of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Properties and Exciting Facts About 118994-89-1

In addition to the literature in the link below, there is a lot of literature about this compound(Ethyl oxazole-5-carboxylate)Related Products of 118994-89-1, illustrating the importance and wide applicability of this compound(118994-89-1).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: Ethyl oxazole-5-carboxylate( cas:118994-89-1 ) is researched.Related Products of 118994-89-1.Yang, Ke; Zhang, Cheng; Wang, Peng; Zhang, Yan; Ge, Haibo published the article 《Nickel-catalyzed decarboxylative acylation of heteroarenes by sp2 C-H functionalization》 about this compound( cas:118994-89-1 ) in Chemistry – A European Journal. Keywords: oxoglyoxylic acid oxazole decarboxylative acylation nickel catalyst; oxazole ketone preparation; acylation; decarboxylation; heteroarenes; nickel; sp2 CH bond functionalization. Let’s learn more about this compound (cas:118994-89-1).

Nickel-catalyzed ligand-free decarboxylative cross-coupling of azole derivatives with α-oxoglyoxylic acids was developed. This work represents the first example of decarboxylative cross-coupling reactions, in a C-H bond functionalization manner, through nickel catalysis, and tolerates various functional groups. Addnl., this approach provides an efficient access to (ox)azole ketones, an important structural motif in many medicinal compounds with a broad range of biol. activities. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

In addition to the literature in the link below, there is a lot of literature about this compound(Ethyl oxazole-5-carboxylate)Related Products of 118994-89-1, illustrating the importance and wide applicability of this compound(118994-89-1).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

The effect of the change of synthetic route on the product 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, illustrating the importance and wide applicability of this compound(2150-55-2).

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid(SMILESS: O=C(C1N=C(N)SC1)O,cas:2150-55-2) is researched.Product Details of 2150-55-2. The article 《Development of enzymic process producing L-cysteine. 2. Improvement of Pseudomonas desmolytica for the enzymatic production of L-cystine》 in relation to this compound, is published in Nippon Nogei Kagaku Kaishi. Let’s take a look at the latest research on this compound (cas:2150-55-2).

In a process to produce L-cystine from DL-2-thiazolin-4-carboxylic acid (ATC) using the enzymic activity of Pseudomonas strains, we proposed the oxidation-reduction potential (ORP) as a criterion to optimize the process in the previous paper. To scale up this process, it was required to reduce the generation of hydrogen sulfide (H2S). A mutant strain of P. desmolytica AJ-11071 which has a higher yield of L-cystine from ATC and lower activity of L-cysteine hydrolysis to generate H2S gas was developed in this experiment An improved strain Number4 in a 65 kL reactor produced 90 g /L of L-cystine from 110 g/L ATC at the molar yield of 93% in 36 h.

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

New learning discoveries about 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, illustrating the importance and wide applicability of this compound(2150-55-2).

Product Details of 2150-55-2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Continuous L-cysteine production using immobilized cell reactors and product extractors. Author is Ryu, Ok Hee; Ju, Jae Yeong; Shin, Chul Soo.

Methods to improve the stability of L-cysteine-producing enzymes from Pseudomonas sp. M-38, both as whole cells and as immobilized cells, were investigated for the production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC). Among the 3 L-cysteine-producing enzymes, only L-ATC hydrolase was unstable. However, the stability of L-ATC hydrolase was significantly enhanced by the addition of 20% sorbitol. In continuous L-cysteine production, >60% of the initial activity of L-ATC hydrolase remained after 1000 h at 37° with 40% sorbitol and at 30° with 20% sorbitol. A system involving a cascade of processes using 2 packed-bed reactors with immobilized cells and 2 L-cysteine extractors with the ion-exchange resin Dowex 50W was developed to reduce product inhibition and unreacted substrate. The overall productivity of the system was 43% higher than for 2 reactors without an ion-exchange extractor.

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Product Details of 2150-55-2, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Discover the magic of the 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, illustrating the importance and wide applicability of this compound(2150-55-2).

Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers. Author is Vinnakota, Chakravarthy V.; Peetha, Naga S.; Perrizo, Mitch G.; Ferris, David G.; Oda, Robert P.; Rockwood, Gary A.; Logue, Brian A..

Cyanide is highly toxic and is present in many foods, combustion products (e.g. cigarette smoke), industrial processes, and has been used as a terrorist weapon. In this study, cyanide and its major metabolites, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid (ATCA), were analyzed from various human biofluids of smokers (low-level chronic cyanide exposure group) and non-smokers to gain insight into the relationship of these biomarkers to cyanide exposure. The concentrations of each biomarker tested were elevated for smokers in each biofluid. Significant differences (p < 0.05) were found for thiocyanate in plasma and urine, and ATCA showed significant differences in plasma and saliva. Addnl., biomarker concentration ratios, correlations between markers of cyanide exposure, and other statistical methods were performed to better understand the relationship between cyanide and its metabolites. Of the markers studied, the results indicate plasma ATCA, in particular, showed excellent promise as a biomarker for chronic low-level cyanide exposure. In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Recommanded Product: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Sources of common compounds: 2150-55-2

There are many compounds similar to this compound(2150-55-2)Synthetic Route of C4H6N2O2S. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Synthetic Route of C4H6N2O2S. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Author is Alwis, K. Udeni; Blount, Benjamin C.; Britt, April S.; Patel, Dhrusti; Ashley, David L..

Volatile organic compounds (VOCs) are ubiquitous in the environment, originating from many different natural and anthropogenic sources, including tobacco smoke. Long-term exposure to certain VOCs may increase the risk for cancer, birth defects, and neurocognitive impairment. Therefore, VOC exposure is an area of significant public health concern. Urinary VOC metabolites are useful biomarkers for assessing VOC exposure because of non-invasiveness of sampling and longer physiol. half-lives of urinary metabolites compared with VOCs in blood and breath. We developed a method using reversed-phase ultra high performance liquid chromatog. (UPLC) coupled with electrospray ionization tandem mass spectrometry (ESI/MSMS) to simultaneously quantify 28 urinary VOC metabolites as biomarkers of exposure. We describe a method that monitors metabolites of acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon-disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride and xylene. The method is accurate (mean accuracy for spiked matrix ranged from 84 to104%), sensitive (limit of detection ranged from 0.5 to 20 ng mL-1) and precise (the relative standard deviations ranged from 2.5 to 11%). We applied this method to urine samples collected from 1203 non-smokers and 347 smokers and demonstrated that smokers have significantly elevated levels of tobacco-related biomarkers compared to non-smokers. We found significant (p < 0.0001) correlations between serum cotinine and most of the tobacco-related biomarkers measured. These findings confirm that this method can effectively quantify urinary VOC metabolites in a population exposed to volatile organics There are many compounds similar to this compound(2150-55-2)Synthetic Route of C4H6N2O2S. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Awesome Chemistry Experiments For 91912-53-7

There are many compounds similar to this compound(91912-53-7)Name: 3-(Pyridin-4-yl)-1H-pyrazol-5-amine. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Name: 3-(Pyridin-4-yl)-1H-pyrazol-5-amine. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 3-(Pyridin-4-yl)-1H-pyrazol-5-amine, is researched, Molecular C8H8N4, CAS is 91912-53-7, about Synthesis and study of the anti-inflammatory properties of some pyrazolo[1,5-a]pyrimidine derivatives. Author is Bruni, Fabrizio; Costanzo, Annarella; Selleri, Silvia; Guerrini, Gabriella; Fantozzi, Roberto; Pirisino, Renato; Brunelleschi, Sandra.

A series of pyrazolo[1,5-a]pyrimidin-7-ones I (R = bromophenyl, methoxyphenyl, thienyl, pyridyl, cyclohexyl, Bu, iso-Pr, nitrophenyl, aminophenyl hydrochloride, and ethylpyridinium iodide) were synthesized to evaluate in vivo and in vitro effects induced by structural modifications at the 2 position of 4,7-dihydro-4-ethyl-2-phenylpyrazolo[1,5-a]pyrimidin-7-one (FPP028). This substance, which has been previously studied, is a weak inhibitor of prostaglandin biosynthesis and a nonacid analgesic and anti-inflammatory agent devoid of ulcerogenic properties. To gain more insight into the mechanism of action of this class of compounds, several in vivo tests were carried out, such as carrageenan-induced rat paw edema and pleurisy. In vitro tests include some studies of leukocyte functions, such as superoxide production and myeloperoxidase release. In vitro effects on arachidonic acid-, ADP, and platelet-activating factor-induced platelet aggregation were also studied. Different anti-inflammatory activities were observed, depending on the nature of substituents at the 2 position; these differences are probably linked to the capacity of these compounds to inhibit leukotrienes and/or prostaglandin biosynthesis with different selectivity. 4,7-Dihydro-4-ethyl-2(2-thienyl)pyrazolo[1,5-a]pyrimidin-7-one proved to be the most interesting compound of the novel synthesized series, showing powerful pharmacol. activity in vivo as well as in vitro, together with very weak acute toxicity.

There are many compounds similar to this compound(91912-53-7)Name: 3-(Pyridin-4-yl)-1H-pyrazol-5-amine. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem

Share an extended knowledge of a compound : 591-54-8

There are many compounds similar to this compound(591-54-8)Name: 4-Aminopyrimidine. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 4-Aminopyrimidine, is researched, Molecular C4H5N3, CAS is 591-54-8, about Synthesis of 2-guanidinyl pyridines and their trypsin inhibition and docking, the main research direction is guanidinylpyridine synthesis trypsin inhibition docking; safety allergic reaction aminomethoxymethylnicotinamide; Enzymology; Halogen bonding; Hydrogen bonding; Inhibitor; Molecular docking; Pyridin-2-yl guanidine; Serine protease.Name: 4-Aminopyrimidine.

A range of guanidine-based pyridines, and related compounds, have been prepared (19 examples). These compounds were evaluated in relation to their competitive inhibition of bovine pancreatic trypsin. Results demonstrate that compounds in which the guanidinyl substituent can form an intramol. hydrogen bond (IMHB) with the pyridinyl nitrogen atom are better trypsin inhibitors than their counterparts that are unable to form an IMHB. Among the compounds 6a-p, examples containing a 5-halo substituent were, generally, found to be better trypsin inhibitors. This trend was inversely related to electronegativity, thus, 1-(5-iodopyridin-2-yl)guanidinium ion 6e (I.TFA) (Ki = 0.0151 mM) was the optimum inhibitor in the 5-halo series. Amongst the isomeric Me substituted compounds, 1-(3-methylpyridin-2-yl)guanidinium ion 6h (II.TFA) demonstrated optimum levels of trypsin inhibition (Ki = 0.0140 mM). In order to rationalize the measured enzyme inhibition, selected compounds were docked with bovine and human trypsin with a view to understanding active site occupancy and taken together with the Ki values the order of inhibitory ability suggests that the 5-halo 2-guanidinyl pyridine inhibitors form a halogen bond with the catalytically active serine hydroxy group. Safety: severe allergic reactions have been reported with 6-amino-N-methoxy-N-methylnicotinamide.

There are many compounds similar to this compound(591-54-8)Name: 4-Aminopyrimidine. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem