Our Top Choice Compound: 2150-55-2

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, illustrating the importance and wide applicability of this compound(2150-55-2).

Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, is researched, Molecular C4H6N2O2S, CAS is 2150-55-2, about Cloning, expression, and identification of genes involved in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid to L-cysteine via S-carbamyl-L-cysteine pathway in Pseudomonas sp. TS1138. Author is Yu, Yangsheng; Liu, Zhong; Liu, Chunqin; Li, Yang; Jin, Yongjie; Yang, Wenbo; Bai, Gang.

Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymic activity assays were performed in vitro. It was found that the tsB gene encoded an L-ATC hydrolase, which catalyzed the conversion of L-ATC to L-SCC, while the tsC gene encoded an L-SCC amidohydrolase, which showed the catalytic ability to convert L-SCC to L-cysteine. These results suggest that tsB and tsC play important roles in the L-SCC pathway and L-cysteine biosynthesis in Pseudomonas sp. TS1138, and that they have potential applications in the industrial production of L-cysteine.

In addition to the literature in the link below, there is a lot of literature about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid, illustrating the importance and wide applicability of this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem