The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 3-Chloropicolinamide( cas:114080-95-4 ) is researched.SDS of cas: 114080-95-4.Dunn, A. D. published the article 《The addition of hydroxylamine to derivatives of halopyridine carboxylic acids》 about this compound( cas:114080-95-4 ) in Zeitschrift fuer Chemie. Keywords: halopyridinecarboxylate hydroxylamine addition; pyridinecarboxylate halo hydroxylamine addition; halopyridinenitrile hydroxylamine cyclization; isoxazolopyridine. Let’s learn more about this compound (cas:114080-95-4).
Cyanopyridines I (R = Cl, R1 = cyano, R2 = H; R = cyano, R1 = Cl, R2 = H; R = H, R1 = cyano, R2 = Cl) reacted with a MeOH solution of NH2OH and MeONa to give isoxazolopyridines. Thus, I (R = Cl, R1 = cyano, R2 = H) gave isoxazolopyridine II. However, I (R = H, R1 = Cl, R2 = cyano) reacted with the same reagent to give I (R, R1, same, R2 = CONH2), and I (R = H, R1 = Br, R2 = cyano) gave I [R, R1, same, R2 = C(:NOH)NH2]. No bicyclic products were formed . Esters I (R = Cl, R1 = CO2Me, R2 = H) reacted with the same reagent to give the hydroxamic acids I (R, R2, same, R1 = CONHOH). Similarly esters I (R = CO2Me, R1 = Br, R2 = H; R= H, R1 = Br, R2 = CO2Me) also gave the corresponding hydroxamic acids.
In addition to the literature in the link below, there is a lot of literature about this compound(3-Chloropicolinamide)SDS of cas: 114080-95-4, illustrating the importance and wide applicability of this compound(114080-95-4).