In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called 2-Iminothiazolidine-4-carboxylic acid produces hippocampal CA1 lesions independent of seizure excitation and glutamate receptor activation, published in 1997, which mentions a compound: 2150-55-2, mainly applied to iminothiazolidinecarboxylate hippocampus CA1 lesion glutamate receptor, Electric Literature of C4H6N2O2S.
In this study, the ability of either 2-iminothiazolidine-4-carboxylic acid (2-ICA), glutamate, proline or NMDA (N-methyl-D-aspartate) injected i.c.v. to produce hippocampal lesions sensitive to glutamate antagonists was compared in mice. Hippocampal CA1 damage was observed 5-days following either a seizure (3.2 μmol) or subseizure (1.0 μmol) dose of 2-ICA. Glutamate (3.2 μmol) or proline (10 μmol) also produced hippocampal damage; glutamate damage was primarily to the CA1 subfield, whereas proline damaged neurons throughout the entire hippocampal formation. NMDA (3.2 nmol) caused seizure activity in all animals with a 50% lethality. No hippocampal damage was observed in surviving mice. Neither MK-801 (dizocilpine maleate) nor CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) pretreatment prevented hippocampal lesions produced by 2-ICA. In contrast, MK-801 significantly reduced the frequency of mice displaying glutamate hippocampal lesions, but failed to block seizures produced by glutamate. MK-801 also protected neurons in the CA2-3 zone and the dentate gyrus, but not in the CA1 region of proline-injected mice. Finally, pretreatment with the mixed metabotropic glutamate receptor (mGluR)1/mGluR2 antagonist-agonist (S)-4-carboxy-3-hydroxyphenylglycine (CHPG) prevented hippocampal damage produced by the mGluR 1 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), but did not protect against 2-ICA hippocampal lesions. These results show that 2-ICA hippocampal CA1 damage is not mediated through ionotropic or metabotropic glutamate receptors. 2-ICA hippocampal damage may represent a neurotoxicity that is distinct from excitotoxic-mediated cell death.
Compound(2150-55-2)Electric Literature of C4H6N2O2S received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid), if you are interested, you can check out my other related articles.