Application of 591-54-8

Here is just a brief introduction to this compound(591-54-8)Application of 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 591-54-8, is researched, SMILESS is C1=CN=CN=C1N, Molecular C4H5N3Journal, Article, Journal of Organic Chemistry called Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide – Functional Groups Tolerance, Scope, and Limitations, Author is Popov, Kirill K.; Campbell, Joanna L. P.; Kysilka, Ondrej; Hosek, Jan; Davies, Christopher D.; Pour, Milan; Kocovsky, Pavel, the main research direction is aldimine preparation green chem; aldehyde amine preparation reductive amination DMF catalyst.Application of 591-54-8.

Aldimines R1CH2NHR2 (R1 = but-3-yn-1-yl, Ph, thiophen-2-yl, etc.; R2 = Bu, Bn, cyclohexyl, 5-methyl-1,3,4-thiadiazol-2-yl, etc.), generated in situ from aliphatic, aromatic, and heteroaromatic aldehydes R1CHO and aliphatic, aromatic, and heteroaromatic primary or secondary amines R2NH2, can be reduced with trichlorosilane in the presence of DMF (DMF) as an organocatalyst (≤10 mol%) in toluene or CH2Cl2 at room temperature The reduction tolerates ketone carbonyls, esters, amides, nitriles, sulfones, sulfonamides, NO2, SF5, and CF3 groups, boronic esters, azides, phosphine oxides, C=C and CC bonds, and ferrocenyl nucleus but sulfoxides and N-oxides are reduced. α,β-Unsaturated aldimines undergo 1,2-reduction only, leaving the C=C bond intact. N-Monoalkylation of primary amines is attained with a 1:1 aldehyde to amine ratio, whereas excess of the aldehyde (≥2:1) allows second alkylation, giving rise to tertiary amines. Reductive N-alkylation of α-amino acids proceeds without racemization; the resulting products, containing a CC bond or N3 group, are suitable for click chem. This reaction thus offers advantages over the traditional methods (borohydride reduction or catalytic hydrogenation) in terms of efficiency and chemoselectivity. Solubility of some of the reacting partners appears to be the only limitation. The byproducts generated by the workup with aqueous NaHCO3 (i.e., NaCl and silica) are environmentally benign. As a greener alternative, DMA can be employed as a catalyst instead of DMF.

Here is just a brief introduction to this compound(591-54-8)Application of 591-54-8, more information about the compound(4-Aminopyrimidine) is in the article, you can click the link below.

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem