Nishio, Tadashi; Toukairin, Yoko; Hoshi, Tomoaki; Arai, Tomomi; Nogami, Makoto published the article 《Quantification of 2-aminothiazoline-4-carboxylic acid as a reliable marker of cyanide exposure using chemical derivatization followed by liquid chromatography-tandem mass spectrometry》. Keywords: forensic cyanide ATCA biomarker chem derivatization LC ESI MS; 2-Aminothiazoline-4-carboxylic acid; Cyanide exposure; Derivatization; LC/ESI–MS/MS; Postmortem human blood.They researched the compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid( cas:2150-55-2 ).Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:2150-55-2) here.
In this research, we have developed a novel and simple liquid chromatog. coupled with electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) method for quantification of 2-aminothiazoline-4-carboxylic acid (ATCA), which is produced by the direct reaction of cyanide (CN) with endogenous cystine. In forensic science, detection of CN is important because CN is a poison that is often used for murder or suicide, in addition to being produced by the thermal decomposition of natural or synthetic materials. However, because CN disappears rapidly from body tissue, ATCA is thought to be a more reliable indicator of CN exposure. For the method reported herein, human blood samples (20μL) were subjected to protein precipitation followed by derivatization with 4-bromoethyl-7-methoxycoumarin. Blood spiked with ATCA at concentrations ranging from 50 to 1500 ng/mL was used to prepare a calibration curve (lower limit of quantification; 50 ng/mL, lower limit of detection; 25 ng/mL). Our method uses chem. derivatization, so unlike previously reported methods, it does not require tedious pretreatment procedures, hydrophilic interaction liquid chromatog. columns, or specialized equipment. In addition, our method allows for repeatable and accurate quantification of ATCA, with intra- and inter-assay coefficients of variation of below 5.0% and below 6.0%, resp. We used the method to analyze ATCA in postmortem human blood samples, including samples from people who had intentionally ingested CN or were fire victims. Blood ATCA concentrations were higher among people who had ingested CN or were fire victims than among people in a control group (P < 0.0001). The data reported herein demonstrate that our LC/ESI-MS/MS method can be used to detect and quantify ATCA in postmortem blood samples and that CN exposure strongly affects ATCA concentration, providing a useful tool for detection of CN poisoning. When you point to this article, it is believed that you are also very interested in this compound(2150-55-2)Quality Control of 2-Amino-4,5-dihydrothiazole-4-carboxylic acid and due to space limitations, I can only present the most important information.