Little discovery in the laboratory: a new route for 591-54-8

If you want to learn more about this compound(4-Aminopyrimidine)Synthetic Route of C4H5N3, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-54-8).

Synthetic Route of C4H5N3. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 4-Aminopyrimidine, is researched, Molecular C4H5N3, CAS is 591-54-8, about Probing the effects of pyrimidine functional group switches on acyclic fleximer analogues for antiviral activity. Author is Yates, Mary K.; Chatterjee, Payel; Flint, Mike; Arefeayne, Yafet; Makuc, Damjan; Plavec, Janez; Spiropoulou, Christina F.; Seley-Radtke, Katherine L..

Due to their ability to inhibit viral DNA or RNA replication, nucleoside analogs have been used for decades as potent antiviral therapeutics. However, one of the major limitations of nucleoside analogs is the development of antiviral resistance. In that regard, flexible nucleoside analogs known as “”fleximers”” have garnered attention over the years due to their ability to survey different amino acids in enzyme binding sites, thus overcoming the potential development of antiviral resistance. Acyclic fleximers have previously demonstrated antiviral activity against numerous viruses including Middle East Respiratory Syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and, most recently, flaviviruses such as Dengue (DENV) and Yellow Fever Virus (YFV). Due to these interesting results, a Structure Activity Relationship (SAR) study was pursued in order to analyze the effect of the pyrimidine functional group and acyl protecting group on antiviral activity, cytotoxicity, and conformation. The results of those studies are presented herein.

If you want to learn more about this compound(4-Aminopyrimidine)Synthetic Route of C4H5N3, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-54-8).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem