A new application about 2150-55-2

If you want to learn more about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Computed Properties of C4H6N2O2S, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(2150-55-2).

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 2-Amino-4,5-dihydrothiazole-4-carboxylic acid(SMILESS: O=C(C1N=C(N)SC1)O,cas:2150-55-2) is researched.Category: tetrahydroquinoline. The article 《Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin》 in relation to this compound, is published in Bioprocess and Biosystems Engineering. Let’s take a look at the latest research on this compound (cas:2150-55-2).

Bioconversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of L-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated L-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve L-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of DL-ATC for the in situ removal of L-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for L-cysteine and low adsorption for DL-ATC, which is a favorable option. With in situ addition of 60 g L-1 resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L-1 of DL-ATC was converted to L-cysteine with 90.4 % of yield and 28.6 mmol L-1 h-1 of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of L-cysteine was improved by 2.27-fold using ISPR method.

If you want to learn more about this compound(2-Amino-4,5-dihydrothiazole-4-carboxylic acid)Computed Properties of C4H6N2O2S, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(2150-55-2).

Reference:
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem