New learning discoveries about C9H16N2O2

The synthetic route of 109838-85-9 has been constantly updated, and we look forward to future research findings.

Application of 109838-85-9, These common heterocyclic compound, 109838-85-9, name is (R)-2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

A 5 L- 3 necked round bottomed flask, equipped with a mechanical stirrer, temperature probe, addition funnel and N2 inlet, was charged with the Schollkopf chiral auxiliary-(Int-13a, 200 g, 1.09 mol, 1.0 eq), bis(chloromethyl) dimethylsilane (Int-13b, 256 g, 1.63 mol, 1.5 eq), and THF (2 L, Aldrich anhydrous). The flask was cooled in a dry ice/ 2- propanol bath until the internal temperature reached -75 °C. n-Butyllithium (Aldrich 2.5 M in hexanes , 478 mL, 1.19 mol, 1.09 eq) was added via a dropping funnel over 1 hour while maintaining the internal reaction temperature between -67 °C and -76 °C. The resulting orange-red solution was allowed to gradually warm to room temperature for about 15 hours. The reaction mixture was then re-cooled to 0 °C and quenched with 500 mL of water.Diethyl ether (2L) was added and the layers were separated. The aqueous layer was extracted with 1 L of diethyl ether. The combined organic extracts was washed with water and brine, dried with MgS04, filtered, and concentrated in vacuo to dryness, giving 480 g of orange oil. This material was left in vacuo for about 15 hours to provide 420 g of oil. The crude product was split into two batches and purified via silica gel chromatography on a 1.6 kg flash column. The column was eluted with gradient of 0-4percent Et20 in hexanes. The product fractions were concentrated in vacuo at a bath temperature at or below 40 °C giving 190 grams of Int-13c-(60percentyield).

The synthetic route of 109838-85-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; SCHERING CORPORATION; COBURN, Craig, A.; LAVEY, Brian, J.; DWYER, Michael, P.; KOZLOWSKI, Joseph, A.; ROSENBLUM, Stuart, B.; WO2012/50848; (2012); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem