Some tips on C4H5BrN4

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 5-Bromopyrazine-2,3-diamine, its application will become more common.

Reference of 89123-58-0,Some common heterocyclic compound, 89123-58-0, name is 5-Bromopyrazine-2,3-diamine, molecular formula is C4H5BrN4, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: Zn(OAc)2·2H2O (5.0 mol%) was transferred to a 100 mL autoclavereactor equipped with an overhead stirrer and an automatic temperature-control system. The appropriate benzene-1,2-diamine 1 (2 mmol), DMF (10.0 mmol), and PMHS (5.0 mmol)were successively introduced. The reactor was sealed, flushedthree times with N2 (10 atm), and heated to the required temperature with vigorous stirring (600 rpm). During the course ofthe reaction, an increase of pressure was observed, due to thegeneration of Me2NH and HCHO at 120 C.15 (For this reason, the protocol needs to be performed in a sealed high-pressurereactor.) When the reaction was complete, the autoclave wascooled to r.t., and the pressure generated during the reactionwas carefully released. Basic hydrolysis was then carried out atr.t. for 30 min to remove unreacted PMHS from the mixture.13aThe mixture was then extracted with EtOAc (3 × 20 mL). Thecombined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. The crude products were further purified bycolumn chromatography [silica gel (100-200 mesh), PE-EtOAc(20:4 to 10:2)]. The spectroscopic data for the products wereconsistent with those reported in the literature.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 5-Bromopyrazine-2,3-diamine, its application will become more common.

Reference:
Article; Nale, Deepak B.; Bhanage, Bhalchandra M.; Synlett; vol. 26; 20; (2015); p. 2835 – 2842;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem