New learning discoveries about 74290-67-8

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Amino-5-bromo-3-methylpyrazine, its application will become more common.

Reference of 74290-67-8,Some common heterocyclic compound, 74290-67-8, name is 2-Amino-5-bromo-3-methylpyrazine, molecular formula is C5H6BrN3, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a solution of 2-amino-5-bromo-3-methylpyrazine (46.5 g, 247.3 mmol) in acetonitrile (450 mL) and THF (750 mL) was added DMAP (3 g, 24.7 mmol). The reaction mixture was stirred for 15 minutes before the addition of di-tert-butyl dicarbonate (242 g, 1 112.8 mmol). The reaction mixture was stirred overnight at room temperature. The reaction was concentrated in vacuo, then diluted with EtOAc (750 mL) and washed with water (500 mL). The organic layers were dried over magnesium sulphate and concentrated in vacuo. The black tar was purified via flash chromatography, using a 10-15% EtOAc in heptane gradient. The resultant solid was triturated with IP A. The resulting white solid (the bis-tert-butoxycarbonyl derivative) was dissolved in methanol (3000 mL), then K2CO3 (61.25 g, 443 mmol) was added. The reaction mixture was stirred overnight at room temperature, then at 60C for 1 h, then allowed to cool and concentrated in vacuo. The residue was dissolved in DCM (1000 mL), then washed with water (2 x 1000 mL) and brine (500 mL). The organic layers were dried over magnesium sulphate, then concentrated in vacuo, to give the title compound (38 g, 80% pure by LCMS). LCMS (ES+) [M+H]+ 288.1 and 289.1 , RT 1.42 minutes (method 1).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Amino-5-bromo-3-methylpyrazine, its application will become more common.

Reference:
Patent; UCB PHARMA S.A.; KATHOLIEKE UNIVERSITEIT LEUVEN, K.U.LEUVEN R&D; FORD, Daniel James; FRANKLIN, Richard Jeremy; GHAWALKAR, Anant Ramrao; HORSLEY, Helen Tracey; HUANG, Qiuya; REUBERSON, James Thomas; VANDERHOYDONCK, Bart; WO2014/96423; (2014); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem