Synthetic Route of 6705-33-5, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 6705-33-5 as follows.
Example 4; 4-Bromo-1-(2,2-dimethylpropyl)-5-(pyrazin-2-ylmethoxy)-1H-1,2,3-benzotriazole (Example 4-1) To a suspension of 4-bromo-1-(2,2-dimethylpropyl)-1H-1,2,3-benzotriazol-5-ol (Example 1-2) (1.5 g, 5.28 mmol, 1.0 equiv.), 2-pyrazinylmethanol (13) (0.581 g, 5.28 mmol, 1.0 equiv.) and polymer-supported triphenylphosphine (2.2 mmol/g, 5.75 g, 21.91 mmol, 2.5 equiv.) in THF (37.7 ml) and DCM (37.7 ml) was slowly added di-tert-butyl azodicarboxylate (2.431 g, 10.56 mmol, 2.0 equiv.). After stirring at room temperature for 1 hr, the reaction mixture was passed through a filter. The residue was washed with DCM and THF. The filtrate was concentrated to dryness to give a solid, which was taken up in DCM (12 mL) and treated with TFA (6 mL). The mixture was stirred at room temperature until LCMS showed only the desired product. The reaction mixture was neutralized to pH=7 with saturated aqueous NaHCO3, and then extracted with DCM. The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified via silica gel chromatography (EtOAc/Hexane gradient from 0 to 100%) to obtain product Example 4-1. 1H NMR delta (CDCl3): 9.06 (s, 1H), 8.59-8.57 (m, 2H), 7.42 (d, 1H, J=9.5 Hz), 7.31 (d, 1H, J=9.0 Hz), 5.38 (s, 2H), 4.38 (s, 2H), 1.04 (s, 9H) ppm. LRMS m/z (M+H) 376.1 and 378.1 (intensity ratio 1:1) found, 376.1 and 378.1 required.
According to the analysis of related databases, 6705-33-5, the application of this compound in the production field has become more and more popular.
Reference:
Patent; Beshore, Douglas C.; Dudkin, Vadim; Garbaccio, Robert M.; Johnson, Adam W.; Kuduk, Scott D.; Skudlarek, Jason W.; Wang, Cheng; Fraley, Mark E.; US2012/135977; (2012); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem