Adding a certain compound to certain chemical reactions, such as: 2423-65-6, name is Pyrazine 1-oxide, belongs to pyrazines compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 2423-65-6, Formula: C4H4N2O
Conditions: The N-oxide (2 equiv.), aryl halide, Pd(OAc)2 (5 mol %), Pt-Bu3-HBF4 (15 mol %), K2CO3 (2 equiv.) and the additive (if indicated, 2 equiv.) were added to a round bottom flask followed by the addition of dioxane and heating to 110 C.; Initial reaction screens with N-oxides 60, 70 and 80 under previously described conditions lead to disappointing results, probably due to the fact that the N-oxides were only sparingly soluble in toluene. The reaction conditions were reinvestigated. These efforts lead to the discovery that dioxane provides superior conversions with N-oxides 60 and 80 giving the cross coupled products 81 and 82 in 75% and 72% yields respectively (Table 3, entries 1 and 2). These two substrates actually exhibit superior reactivity compared to pyridine N-oxide as demonstrated by a competition experiment between 80 and pyridine N-oxide which results in exclusive arylation of 60 (Table 3, entry 4). In contrast to the excellent results obtained with 60 and 80, pyrimidine N-oxide 70 reacts in low yield (Table 3, entry 3).
At the same time, in my other blogs, there are other synthetic methods of this type of compound, Pyrazine 1-oxide, and friends who are interested can also refer to it.
Reference:
Patent; University of Ottawa; US2008/132698; (2008); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem