Share a compound : 3-Chloropyrazine-2-carbonitrile

According to the analysis of related databases, 55557-52-3, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 55557-52-3 as follows. Computed Properties of C5H2ClN3

General procedure: Compounds 5-10 (Supplemental Figure 6A, Scheme 1), 12-15 (Supplemental Figure 6B, Scheme 2), and 17, 18 (Supplemental Figure 6C, Scheme 3) were prepared by a modified procedure as reported by Kayser F. et al. (ref 1) and Chen Z. et al. (ref. 2). To a solution of the corresponding thiol, or phenol 4 (0.85 g, 5.0 mmol) in 15 ml DMF (N, N-Dimethylformamide) 3-chloropyrazine-2-carbonitrile (0.66 g, 4.76 mmol) and Na2CO3 (1.01 g, 9.52 mmol), or substituted chrolopyridines, or chlorobenzenes, were added respectively and the resulting mixture was refluxed at 80 C for 12 h. The DMF was evaporated at reduced pressure and the compound A residue was recrystallized from ethyl acetate. The rest of the compounds were purified by flash chromatography on silica gel with ethyl acetate:hexanes (5-100% gradient).

According to the analysis of related databases, 55557-52-3, the application of this compound in the production field has become more and more popular.

Reference:
Article; Freeman, Lita A.; Demosky, Stephen J.; Konaklieva, Monika; Kuskovsky, Rostislav; Aponte, Angel; Ossoli, Alice F.; Gordon, Scott M.; Koby, Ross F.; Manthei, Kelly A.; Shen, Min; Vaisman, Boris L.; Shamburek, Robert D.; Jadhav, Ajit; Calabresi, Laura; Gucek, Marjan; Tesmer, John J. G.; Levine, Rodney L.; Remaley, Alan T.; Journal of Pharmacology and Experimental Therapeutics; vol. 362; 2; (2017); p. 306 – 318;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem