Brief introduction of 2-Chloropyrazine

Statistics shows that 2-Chloropyrazine is playing an increasingly important role. we look forward to future research findings about 14508-49-7.

Reference of 14508-49-7, These common heterocyclic compound, 14508-49-7, name is 2-Chloropyrazine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

The starting compound 3-chloropyrazine-2-carboxamide was synthesized using two published procedures. The first method was classified as less effective and was based on the homolytic amidation of 2-chloropyrazine. Thus, 2-chloropyrazine (0.17 mol) was dissolved in formamide (3.7 mol), heated to 90 C and ammonium peroxodisulphate (0.18 mol) was added portionwise over one hour period. This mixture reacted for another one hour at 90 C and then it was left to stand for 24 h at laboratory temperature. Dilution with 100 mL of water was followed by filtration and this filtrate was extracted continuously with chloroform for 16 h [34,42]. The mixture of three positional isomers was separated by flash chromatography using silica gel as stationary phase. The second process used 3-chloropyrazine-2-carbonitrile, which was submitted to partial hydrolysis of the nitrile group. The powdered carbonitrile (0.104 mol) was added little by little into the reaction mixture of concentrated hydrogen peroxide (0.95 mol) and water (195 mL) heated to 50 C. The pH was adjusted and regulated around a value of 9 using an 8% solution of sodium hydroxide and the temperature of the reaction was regulated between 55 and 60 C. The reaction was stopped after 2.5 h and was cooled to 5 C. Newly-emerged crystals were removed by suction and recrystallized from ethanol [42].

Statistics shows that 2-Chloropyrazine is playing an increasingly important role. we look forward to future research findings about 14508-49-7.

Reference:
Article; Jandourek, Ondrej; Dolezal, Martin; Kunes, Jiri; Kubicek, Vladimir; Paterova, Pavla; Pesko, Matus; Buchta, Vladimir; Kralova, Katarina; Zitko, Jan; Molecules; vol. 19; 7; (2014); p. 9318 – 9338;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem