Analyzing the synthesis route of 50866-30-3

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 50866-30-3, its application will become more common.

Some common heterocyclic compound, 50866-30-3, name is 5-Methylpyrazine-2-carbaldehyde, molecular formula is C6H6N2O, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. HPLC of Formula: C6H6N2O

To a solution of N,N- bis(4-methoxybenzyl)ethanesulfonamide (Example 12.0, 73.13 g, 0.209 mol, 1.2 equiv.) in anhydrous THF (600 mL) at -78 C was added n-butyl lithium (83.71 mL, 0.209 mol, 2.5 M solution in hexanes, 1.2 equiv.) via additional funnel slowly, and the resulting mixture was stirred for 10 min. A solution of 5-methylpyrazine-2-carbaldehyde (Example 33.1, 21.3 g, 0.174 mol, 1.0 equiv.) in anhydrous THF (150 mL) was then added, and the resulting mixture was stirred at the same temperature for 45 min and allowed to warm to RT for 2 h. The reaction mixture was quenched by addition of an aqueous ammonium chloride solution (200 mL) and extracted with EtOAc (2 x 2 L). The combined organic layers were washed with brine (2 x 500 mL). After drying over anhydrous Na2SO4, the filtrate was concentrated in vacuo, to afford an oil. The oil thus obtained was purified by flash column chromatography (silica gel, 230-400 mesh) to afford the two isomers. The faster moving isomer (32 g as white solid) was obtained from the column with a gradient of 10 % to 30 % EtOAc in petroleum ether. 1H NMR (400 MHz, DMSO-d6) delta 8.61 (d, J = 1.5 Hz, 1H), 8.51 (d, J = 1.5 Hz, 1H), 7.22- 7.11 (m, 4H), 6.90- 6.80 (m, 4H), 6.10 (d, J = 5.9 Hz, 1H), 5.29 (dd, J = 5.9, 2.2 Hz, 1H), 4.36- 4.16 (m, 4H), 3.73 (m, 6H), 3.70-3.66 (m, 1H) 2.50 (merged with solvent peak, 3H) and 1.10 (d, J = 7.0 Hz, 3H). LCMS-ESI (pos.) m/z: 472.4 (M+H)+.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 50866-30-3, its application will become more common.

Reference:
Patent; AMGEN INC.; CHEN, Yinhong; CHENG, Alan C.; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; PATTAROPONG, Vatee; SWAMINATH, Gayathri; KREIMAN, Charles; MOEBIUS, David C.; SHARMA, Ankit; (543 pag.)WO2018/93580; (2018); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem