New learning discoveries about Pyrazine-2-carboximidamide hydrochloride

According to the analysis of related databases, 138588-41-7, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 138588-41-7 as follows. 138588-41-7

7-chloro-N,N,9-trimethyl-2-pyrazin-2-yl-9H-pyrimido[4,5-b]indole-4-carboxamide 0.6 g (26 mmol) of sodium was dissolved under nitrogen in 150 ml of absolute ethanol. Next, 1.2 g (7.6 mmol) of pyrazine-2-carboxamidine hydrochloride was added. After stirring for 1 h 30 min, the residual insoluble part was isolated by filtration and the filtrate was concentrated under reduced pressure. 150 ml of dichloromethane was added and the mixture was filtered. The filtrate was concentrated under reduced pressure. Added to the residue were 100 ml of xylene, then 0.24 g (0.80 mmol) of 2-(2,6-dichloro-1-methyl-1H-indol-3-yl)-N,N-dimethyl-2-oxoacetamide, obtained according to step 1.2. from example 1. The mixture was heated under reflux for 18 h. It was then cooled and concentrated under reduced pressure. Dichloromethane, water and a (1M) aqueous solution of sodium hydroxide was added. The organic phase was decanted, washed with water, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by chromatography on a silica gel column with a mixture of solvents (dichloromethane/ethyl acetate: 80/20 to 0/100, then ethyl acetate/methanol: 100/0 to 95/5). The compound obtained was recrystallized in an ethyl acetate/methanol mixture, it was isolated by filtration, rinsed with diethyl ether and dried under reduced pressure. 0.070 g of 7-chloro-N,N,9-trimethyl-2-pyrazin-2-yl-9H-pyrimido[4,5-b]indole-4-carboxamide was isolated in the form of a white solid. M.P.: 272-273 C. LC/MS: M+H=367 1H NMR (CDCl3, 200 MHz): 9.9 (s, 1H); 8.9 (d, 1H); 8.7 (d, 1H); 8.1 (d, 1H); 7.6 (d, 1H); 7.4 (dd, 1H); 4.1 (s, 3H); 3.4 (s, 3H); 3.1 (s, 3H).

According to the analysis of related databases, 138588-41-7, the application of this compound in the production field has become more and more popular.

Reference:
Patent; SANOFI-AVENTIS; US2008/125410; (2008); A1;,
Pyrazine – Wikipedia,
Pyrazine | C4H4N2 – PubChem